2 research outputs found

    Asymmetric DNA-Search Dynamics by Symmetric Dimeric Proteins

    No full text
    We focus on dimeric DNA-binding proteins from two well-studied families: orthodox type II restriction endonucleases (REs) and transcription factors (TFs). Interactions of the protein’s recognition sites with the DNA and, particularly, the contribution of each of the monomers to one-dimensional (1D) sliding along nonspecific DNA were studied using computational tools. Coarse-grained molecular dynamics simulations of DNA scanning by various TFs and REs provide insights into how the symmetry of a homodimer can be broken while they nonspecifically interact with DNA. The characteristics of protein sliding along DNA, such as the average sliding length, partitioning between 1D and 3D search, and the one-dimensional diffusion coefficient <i>D</i><sub>1</sub>, strongly depend on the salt concentration, which in turn affects the probability of the two monomers adopting a cooperative symmetric sliding mechanism. Indeed, we demonstrate that maximal DNA search efficiency is achieved when the protein adopts an asymmetric search mode in which one monomer slides while its partner hops. We find that proteins classified as TFs have a higher affinity for the DNA, longer sliding lengths, and an increased probability of symmetric sliding in comparison with REs. Moreover, TFs can perform their biological function over a much wider range of salt concentrations than REs. Our results demonstrate that the different biological functions of DNA-binding proteins are related to the different nonspecific DNA search mechanisms they adopt

    Design of Compact Biomimetic Cellulose Binding Peptides as Carriers for Cellulose Catalytic Degradation

    No full text
    The conversion of biomass into biofuels can reduce the strategic vulnerability of petroleum-based systems and at the same time have a positive effect on global climate issues. Lignocellulose is the cheapest and most abundant source of biomass and consequently has been widely considered as a source for liquid fuel. However, despite ongoing efforts, cellulosic biofuels are still far from commercial realization, one of the major bottlenecks being the hydrolysis of cellulose into simpler sugars. Inspired by the structural and functional modularity of cellulases used by many organisms for the breakdown of cellulose, we propose to mimic the cellulose binding domain (CBD) and the catalytic domain of these proteins by small molecular entities. Multiple copies of these mimics could subsequently be tethered together to enhance hydrolytic activity. In this work, we take the first step toward achieving this goal by applying computational approaches to the design of efficient, cost-effective mimetics of the CBD. The design is based on low molecular weight peptides that are amenable to large-scale production. We provide an optimized design of four short (i.e., ∼18 residues) peptide mimetics based on the three-dimensional structure of a known CBD and demonstrate that some of these peptides bind cellulose as well as or better than the full CBD. The structures of these peptides were studied by circular dichroism and their interactions with cellulose by solid phase NMR. Finally, we present a computational strategy for predicting CBD/peptide–cellulose binding free energies and demonstrate its ability to provide values in good agreement with experimental data. Using this computational model, we have also studied the dissociation pathway of the CBDs/peptides from the surface of cellulose
    corecore