3 research outputs found

    Reactivity of a σ,σ,σ,σ-Tetraradical: The 2,4,6-Tridehydropyridine Radical Cation

    No full text
    The 2,4,6-tridehydropyridine radical cation, an analogue of the elusive 1,2,3,5-tetradehydrobenzene, was generated in the gas phase and its reactivity examined. Surprisingly, the tetraradical was found not to undergo radical reactions. This behavior is rationalized by resonance structures hindering fast radical reactions. This makes the cation highly electrophilic, and it rapidly reacts with many nucleophiles by quenching the N–C <i>ortho</i>-benzyne moiety, thereby generating a relatively unreactive <i>meta</i>-benzyne analogue

    Substituent Effects on the Nonradical Reactivity of 4-Dehydropyridinium Cation

    No full text
    Recent studies have shown that the reactivity of the 4-dehydropyridinium cation significantly differs from the reactivities of its isomers toward tetrahydrofuran. While only hydrogen atom abstraction was observed for the 2- and 3-dehydropyridinium cations, nonradical reactions were observed for the 4-isomer. In order to learn more about these reactions, the gas-phase reactivities of the 4-dehydropyridinium cation and several of its derivatives toward tetrahydrofuran were investigated in a Fourier transform ion electron resonance mass spectrometer. Both radical and nonradical reactions were observed for most of these positively charged radicals. The major parameter determining whether nonradical reactions occur was found to be the electron affinity of the radicalsî—¸only those with relatively high electron affinities underwent nonradical reactions. The reactivities of the monoradicals are also affected by hydrogen bonding and steric effects

    On-Line Mass Spectrometric Methods for the Determination of the Primary Products of Fast Pyrolysis of Carbohydrates and for Their Gas-Phase Manipulation

    No full text
    Mass spectrometric methodology was developed for the determination and manipulation of the primary products of fast pyrolysis of carbohydrates. To determine the true primary pyrolysis products, a very fast heating pyroprobe was coupled to a linear quadrupole ion trap mass spectrometer through a custom-built adaptor. A home-built flow tube that simulates pyrolysis reactor conditions was used to examine the secondary reactions of the primary products. Depending on the experiment, the pyrolysis products were either evaporated and quenched or allowed to react for a period of time. The quenched products were ionized in an atmospheric pressure chemical ionization (APCI) source infused with one of two ionization reagents, chloroform or ammonium hydroxide, to aid in ionization. During APCI in negative ion mode, chloroform produces chloride anions that are known to readily add to carbohydrates with little bias and little to no fragmentation. On the other hand, in positive ion mode APCI, ammonium hydroxide forms ammonium adducts with carbohydrates with little to no fragmentation. The latter method ionizes compounds that are not readily ionized upon negative ion mode APCI, such as furan derivatives. Six model compounds were studied to verify the ability of the ionization methods to ionize known pyrolysis products: glycolaldehyde, hydroxyacetone, furfural, 5-hydroxymethylfurfural, levoglucosan, and cellobiosan. The method was then used to examine fast pyrolysis of cellobiose. The primary fast pyrolysis products were determined to consist of only a handful of compounds that quickly polymerize to form anhydro-oligosaccharides when allowed to react at high temperatures for an extended period of time
    corecore