164 research outputs found
On passage through resonances in volume-preserving systems
Resonance processes are common phenomena in multiscale (slow-fast) systems.
In the present paper we consider capture into resonance and scattering on
resonance in 3-D volume-preserving slow-fast systems. We propose a general
theory of those processes and apply it to a class of viscous Taylor-Couette
flows between two counter-rotating cylinders. We describe the phenomena during
a single passage through resonance and show that multiple passages lead to the
chaotic advection and mixing. We calculate the width of the mixing domain and
estimate a characteristic time of mixing. We show that the resulting mixing can
be described using a diffusion equation with a diffusion coefficient depending
on the averaged effect of the passages through resonances.Comment: 23 pages and 9 Figure
On the accuracy of conservation of adiabatic invariants in slow-fast systems
Let the adiabatic invariant of action variable in slow-fast Hamiltonian
system with two degrees of freedom have two limiting values along the
trajectories as time tends to infinity. The difference of two limits is
exponentially small in analytic systems. An iso-energetic reduction and
canonical transformations are applied to transform the slow-fast systems to
form of systems depending on slowly varying parameters in a complexified phase
space. On the basis of this method an estimate for the accuracy of conservation
of adiabatic invariant is given for such systems.Comment: 27 pages, 14 figure
Equation of motion and subsonic-transonic transitions of rectilinear edge dislocations: A collective-variable approach
A theoretical framework is proposed to derive a dynamic equation motion for
rectilinear dislocations within isotropic continuum elastodynamics. The theory
relies on a recent dynamic extension of the Peierls-Nabarro equation, so as to
account for core-width generalized stacking-fault energy effects. The degrees
of freedom of the solution of the latter equation are reduced by means of the
collective-variable method, well known in soliton theory, which we reformulate
in a way suitable to the problem at hand. Through these means, two coupled
governing equations for the dislocation position and core width are obtained,
which are combined into one single complex-valued equation of motion, of
compact form. The latter equation embodies the history dependence of
dislocation inertia. It is employed to investigate the motion of an edge
dislocation under uniform time-dependent loading, with focus on the
subsonic/transonic transition. Except in the steady-state supersonic range of
velocities---which the equation does not address---our results are in good
agreement with atomistic simulations on tungsten. In particular, we provide an
explanation for the transition, showing that it is governed by a
loading-dependent dynamic critical stress. The transition has the character of
a delayed bifurcation. Moreover, various quantitative predictions are made,
that could be tested in atomistic simulations. Overall, this work demonstrates
the crucial role played by core-width variations in dynamic dislocation motion.Comment: v1: 11 pages, 4 figures. v2: title changed, extensive rewriting, and
new material added; 19 pages, 12 figures (content as published
- …