164 research outputs found

    On passage through resonances in volume-preserving systems

    Full text link
    Resonance processes are common phenomena in multiscale (slow-fast) systems. In the present paper we consider capture into resonance and scattering on resonance in 3-D volume-preserving slow-fast systems. We propose a general theory of those processes and apply it to a class of viscous Taylor-Couette flows between two counter-rotating cylinders. We describe the phenomena during a single passage through resonance and show that multiple passages lead to the chaotic advection and mixing. We calculate the width of the mixing domain and estimate a characteristic time of mixing. We show that the resulting mixing can be described using a diffusion equation with a diffusion coefficient depending on the averaged effect of the passages through resonances.Comment: 23 pages and 9 Figure

    On the accuracy of conservation of adiabatic invariants in slow-fast systems

    Full text link
    Let the adiabatic invariant of action variable in slow-fast Hamiltonian system with two degrees of freedom have two limiting values along the trajectories as time tends to infinity. The difference of two limits is exponentially small in analytic systems. An iso-energetic reduction and canonical transformations are applied to transform the slow-fast systems to form of systems depending on slowly varying parameters in a complexified phase space. On the basis of this method an estimate for the accuracy of conservation of adiabatic invariant is given for such systems.Comment: 27 pages, 14 figure

    Equation of motion and subsonic-transonic transitions of rectilinear edge dislocations: A collective-variable approach

    Full text link
    A theoretical framework is proposed to derive a dynamic equation motion for rectilinear dislocations within isotropic continuum elastodynamics. The theory relies on a recent dynamic extension of the Peierls-Nabarro equation, so as to account for core-width generalized stacking-fault energy effects. The degrees of freedom of the solution of the latter equation are reduced by means of the collective-variable method, well known in soliton theory, which we reformulate in a way suitable to the problem at hand. Through these means, two coupled governing equations for the dislocation position and core width are obtained, which are combined into one single complex-valued equation of motion, of compact form. The latter equation embodies the history dependence of dislocation inertia. It is employed to investigate the motion of an edge dislocation under uniform time-dependent loading, with focus on the subsonic/transonic transition. Except in the steady-state supersonic range of velocities---which the equation does not address---our results are in good agreement with atomistic simulations on tungsten. In particular, we provide an explanation for the transition, showing that it is governed by a loading-dependent dynamic critical stress. The transition has the character of a delayed bifurcation. Moreover, various quantitative predictions are made, that could be tested in atomistic simulations. Overall, this work demonstrates the crucial role played by core-width variations in dynamic dislocation motion.Comment: v1: 11 pages, 4 figures. v2: title changed, extensive rewriting, and new material added; 19 pages, 12 figures (content as published
    corecore