89 research outputs found

    Genetic Manipulation of Iron Biomineralization Enhances MR Relaxivity in a Ferritin-M6A Chimeric Complex

    Get PDF
    Ferritin has gained significant attention as a potential reporter gene for in vivo imaging by magnetic resonance imaging (MRI). However, due to the ferritin ferrihydrite core, the relaxivity and sensitivity for detection of native ferritin is relatively low. We report here on a novel chimeric magneto-ferritin reporter gene – ferritin-M6A – in which the magnetite binding peptide from the magnetotactic bacteria magnetosome-associated Mms6 protein was fused to the C-terminal of murine h-ferritin. Biophysical experiments showed that purified ferritin-M6A assembled into a stable protein cage with the M6A protruding into the cage core, enabling magnetite biomineralisation. Ferritin-M6A-expressing C6-glioma cells showed enhanced (per iron) r2 relaxivity. MRI in vivo studies of ferritin-M6A-expressing tumour xenografts showed enhanced R2 relaxation rate in the central hypoxic region of the tumours. Such enhanced relaxivity would increase the sensitivity of ferritin as a reporter gene for non-invasive in vivo MRI-monitoring of cell delivery and differentiation in cellular or gene-based therapies

    Lymphatic vessel density and function in experimental bladder cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The lymphatics form a second circulatory system that drains the extracellular fluid and proteins from the tumor microenvironment, and provides an exclusive environment in which immune cells interact and respond to foreign antigen. Both cancer and inflammation are known to induce lymphangiogenesis. However, little is known about bladder lymphatic vessels and their involvement in cancer formation and progression.</p> <p>Methods</p> <p>A double transgenic mouse model was generated by crossing a bladder cancer-induced transgenic, in which SV40 large T antigen was under the control of uroplakin II promoter, with another transgenic mouse harboring a <it>lacZ </it>reporter gene under the control of an NF-κB-responsive promoter (κB-<it>lacZ</it>) exhibiting constitutive activity of β-galactosidase in lymphatic endothelial cells. In this new mouse model (SV40-<it>lacZ</it>), we examined the lymphatic vessel density (LVD) and function (LVF) during bladder cancer progression. LVD was performed in bladder whole mounts and cross-sections by fluorescent immunohistochemistry (IHC) using LYVE-1 antibody. LVF was assessed by real-time <it>in vivo </it>imaging techniques using a contrast agent (biotin-BSA-Gd-DTPA-Cy5.5; Gd-Cy5.5) suitable for both magnetic resonance imaging (MRI) and near infrared fluorescence (NIRF). In addition, IHC of Cy5.5 was used for time-course analysis of co-localization of Gd-Cy5.5 with LYVE-1-positive lymphatics and CD31-positive blood vessels.</p> <p>Results</p> <p>SV40-<it>lacZ </it>mice develop bladder cancer and permitted visualization of lymphatics. A significant increase in LVD was found concomitantly with bladder cancer progression. Double labeling of the bladder cross-sections with LYVE-1 and Ki-67 antibodies indicated cancer-induced lymphangiogenesis. MRI detected mouse bladder cancer, as early as 4 months, and permitted to follow tumor sizes during cancer progression. Using Gd-Cy5.5 as a contrast agent for MRI-guided lymphangiography, we determined a possible reduction of lymphatic flow within the tumoral area. In addition, NIRF studies of Gd-Cy5.5 confirmed its temporal distribution between CD31-positive blood vessels and LYVE-1 positive lymphatic vessels.</p> <p>Conclusion</p> <p>SV40-<it>lacZ </it>mice permit the visualization of lymphatics during bladder cancer progression. Gd-Cy5.5, as a double contrast agent for NIRF and MRI, permits to quantify delivery, transport rates, and volumes of macromolecular fluid flow through the interstitial-lymphatic continuum. Our results open the path for the study of lymphatic activity <it>in vivo </it>and in real time, and support the role of lymphangiogenesis during bladder cancer progression.</p

    Neeman, Michal

    No full text

    Dynamic Remodeling of the Vascular Bed Precedes Tumor Growth: MLS Ovarian Carcinoma Spheroids Implanted in Nude Mice

    No full text
    The goal of this study was to monitor the vascular bed during the lag phase in growth of implanted spheroids as a model of tumor dormancy. Vascular development and tumor growth were followed up by magnetic resonance imaging in a model system of MILS ovarian carcinoma spheroids implanted subcutaneously in female nude mice. Apparent vessel density in a 1-mm rim surrounding the spheroid was evaluated by gradient echo imaging as a measure of the angiogenic potential of the tumor. Vascular functionality and maturation were assessed by signal intensity changes in response to hyperoxia (elevated oxygen) and hypercapnia (elevated carbon dioxide), respectively. Tumor growth was delayed by 12 to 57 days after implantation. During this long period in which tumor volume did not change, up to 6 cycles of vascular development and regression were observed. We propose here that dynamic remodeling of the vascular bed may precede exit of tumors from dormancy. The sustained oscillations in the angiogenic response to the implanted spheroid are consistent with hypoxic regulation of vascular endothelial growth factor (VEGF), combined with the role of VEGF as an essential survival factor for newly formed blood vessels. Vascular maturation, manifested by physiological vasodilatory response to carbon dioxide, may be important for conferring vascular stability and exit from dormancy

    Deuterium Magnetic Resonance Imaging and the Discrimination of Fetoplacental Metabolism in Normal and L-NAME-Induced Preeclamptic Mice

    No full text
    Recent magnetic resonance studies in healthy and cancerous organs have concluded that deuterated metabolites possess highly desirable properties for mapping non-invasively and, as they happen, characterizing glycolysis and other biochemical processes in animals and humans. A promising avenue of this deuterium metabolic imaging (DMI) approach involves looking at the fate of externally administered 2H6,6′-glucose, as it is taken up and metabolized into different products as a function of time. This study employs deuterium magnetic resonance to follow the metabolism of wildtype and preeclamptic pregnant mice models, focusing on maternal and fetoplacental organs over ≈2 h post-injection. 2H6,6′-glucose uptake was observed in the placenta and in specific downstream organs such as the fetal heart and liver. Main metabolic products included 2H3,3′-lactate and 2H-water, which were produced in individual fetoplacental organs with distinct time traces. Glucose uptake in the organs of most preeclamptic animals appeared more elevated than in the control mice (p = 0.02); also higher was the production of 2H-water arising from this glucose. However, the most notable differences arose in the 2H3,3′-lactate concentration, which was ca. two-fold more abundant in the placenta (p = 0.005) and in the fetal (p = 0.01) organs of preeclamptic-like animals, than in control mice. This is consistent with literature reports about hypoxic conditions arising in preeclamptic and growth-restricted pregnancies, which could lead to an enhancement in anaerobic glycolysis. Overall, the present measurements suggest that DMI, a minimally invasive approach, may offer new ways of studying and characterizing health and disease in mammalian pregnancies, including humans

    Ferritin as an Endogenous MRI Reporter for Noninvasive Imaging of Gene Expression in C6 Glioma Tumors

    Get PDF
    The heavy chain of murine ferritin, an iron storage molecule with ferroxidase activity, was developed as a novel endogenous reporter for the detection of gene expression by magnetic resonance imaging (MRI). Expression of both enhanced green fluorescent protein (EGFP) and influenza hemagglutinin (HA)-tagged ferritin were tightly coregulated by tetracycline (TET), using a bidirectional expression vector. C6 cells stably expressing a TET-EGFP-HA-ferritin construct enabled the dynamic detection of TET-regulated gene expression by MRI, followed by independent validation using fluorescence microscopy and histology. MR relaxation rates were significantly elevated both in vitro and in vivo on TET withdrawal, and were consistent with induced expression of ferritin and increase in intracellular iron content. Hence, overexpression of ferritin was sufficient to trigger cellular response, augmenting iron uptake to a degree detectable by MRI. Application of this novel MR reporter gene that generates significant contrast in the absence of exogenously administered substrates opens new possibilities for noninvasive molecular imaging of gene expression by MRI

    Inhibition of Neovascularization and Tumor Growth, Facilitation of Wound Repair, by Halofuginone, an Inhibitor of Collagen Type I Synthesis

    Get PDF
    Halofuginone, an inhibitor of collagen α1(I) gene expression was used for the treatment of subcutaneously implanted C6 glioma tumors. Halofuginone had no effect on the growth of C6 glioma spheroids in vitro, these spheroids showed no collagen α1(I) expression and no collagen synthesis. However, a significant attenuation of tumor growth was observed in vivo, for spheroids implanted in CD-1 nude mice which were treated by oral or intraperitoneal (4 μtg every 48 hours) administration of halofuginone. In these mice, treatment was associated with a dose-dependent reduction in collagen α1(I) expression and dose- and time-dependent inhibition of angiogenesis, as measured by MRI. Moreover, halofuginone treatment was associated with improved re-epithelialization of the chronic wounds that are associated with this experimental model. Oral administration of halofuginone was effective also in intervention in tumor growth, here, too, the treatment was associated with reduced angiogenic activity and vessel regression. These results demonstrate the important role of collagen type I in tumor angiogenesis and tumor growth and implicate its role in chronic wounds. Inhibition of the expression of collagen type I provides an attractive new target for cancer therapy
    • …
    corecore