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Abstract

The heavy chain of murine ferritin, an iron storage

molecule with ferroxidase activity, was developed as a

novel endogenous reporter for the detection of gene

expression by magnetic resonance imaging (MRI).

Expression of both enhanced green fluorescent pro-

tein (EGFP) and influenza hemagglutinin (HA)–tagged

ferritin were tightly coregulated by tetracycline (TET),

using a bidirectional expression vector. C6 cells stably

expressing a TET-EGFP-HA-ferritin construct enabled

the dynamic detection of TET-regulated gene expres-

sion by MRI, followed by independent validation using

fluorescence microscopy and histology. MR relaxation

rates were significantly elevated both in vitro and

in vivo on TET withdrawal, and were consistent with

induced expression of ferritin and increase in intra-

cellular iron content. Hence, overexpression of ferritin

was sufficient to trigger cellular response, augmenting

iron uptake to a degree detectable by MRI. Application

of this novel MR reporter gene that generates sig-

nificant contrast in the absence of exogenously

administered substrates opens new possibilities

for noninvasive molecular imaging of gene expression

by MRI.
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Introduction

Advances in molecular biology and cellular biochemistry

provide innovative approaches for developing new molecu-

lar imaging probes for magnetic resonance imaging (MRI),

to allow noninvasive dynamic mapping of multiple parame-

ters of biologic processes. Such probes can be devel-

oped for specific molecular targets using antibodies,

ligands [1–4], or ‘‘smart’’ probes activated by a target

enzyme such as b-galactosidase [5–7]. Reporter enzymes

were suggested also for magnetic resonance spectroscopy

(MRS), including creatine kinase [8] and thymidine kinase

[9]. Another option for MRI reporter is the transferrin recep-

tor, in which contrast is generated by inducing receptor-

mediated internalization of exogenously administered

transferrin coupled to paramagnetic particles [2]. Recently,

tyrosinase-catalyzed melanin synthesis was suggested as

a reporter, in which contrast was generated by exogenously

administered iron, which binds to the melanin [10,11]. How-

ever, overexpression of either tyrosinase or transferrin receptor

could elevate radical formation by Fenton reaction due to the

increase in free iron concentration [12].

Thus far, all the reporter genes developed for MRI rely on

exogenous administration of contrast material; therefore, deliv-

ery barriers and clearance must be considered. The aim of our

work was to develop a novel endogenous reporter for imaging

gene expression by MRI. Endogenous reporter proteins for

optical imaging such as GFP are widely used. However, sensi-

tivity as well as resolution for detection of fluorescent proteins

are significantly limited by the depth of penetration and scatter-

ing of light. MRI offers exquisite spatial resolution for deep

tissues; thus, an endogenous reporter of gene expression for

MRI would provide an important tool, complementing optical

imaging for deep tissue molecular imaging.

Here we would like to propose ferritin as an endogenous

reporter protein for MRI, which would directly change the MR

signal, in its expression site, in analogy to fluorescent proteins

in optical imaging, without the need to administer additional

contrast materials (Figure 1). Overexpression of ferritin is

expected to transiently lower intracellular iron concentration,

leading to physiological compensation augmenting iron uptake.

Excess intracellular iron would be safely sequestered within the

overexpressed ferritin, thus minimizing iron toxicity. Sensitivity

for detection by MR would be enhanced by two mechanisms,

including net iron uptake as well as changes in iron relaxivity,

due to redistribution of the existing intracellular iron within a

larger ferritin pool. HA tag as well as enhanced green fluores-

cent protein (EGFP) were added to allow independent valida-

tion of the MRI data by molecular analysis and fluorescence

microscopy (Figure 1). Ferritin is a ubiquitous and highly

conserved iron-binding protein. In vertebrates, the cytosolic

ferritin is a heteropolymer composed of variable proportions of
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H and L subunits [13]. Twenty-four ferritin subunits assemble

to form the apoferritin shell. Each apoferritin molecule of

450 kDa can sequester up to 4500 iron atoms, depending

on the tissue type and physiologic status of the cell. Cellular

models in which ferritin expression was modulated revealed

that the heavy (H) chain is the main regulator of ferritin

activity. The H subunit has ferroxidase activity that promotes

iron oxidation and incorporation [14]. In contrast, the L-chain

lacks detectable ferroxidase activity but facilitates the activity

of the H-chain by offering sites for iron nucleation and

mineralization, and by increasing the turnover at the ferroxi-

dase center [15]. Cells transfected with the mouse H-chain

ferritin responded by upregulation of transferrin receptor and

increased iron uptake [16].

Ferritin shortens both T1 and T2 relaxation times; thus,

MRI was used for in vivo quantification of ferritin-bound iron

in liver and brain nuclei in pathologies including b-thalasse-
mia and Alzheimer’s disease [17,18]. Several in vitro studies

were conducted to determine the transverse (T2) relaxation

of water as a function of iron load on ferritin [19,20]. These

studies showed that the contribution of iron atoms to relax-

ivity is exceptionally high at low iron loading. Based on these

findings, we postulated that changes in the expression of

apoferritin and redistribution of iron could alter MR contrast

even in the absence of changes in total iron content [19].

A cassette of multimodality reporter genes was construct-

ed so as to allow tight tetracycline (TET) regulation of expres-

sion of ferritin as well as EGFP (Figure 1). The proposed

reporter would permit the detection of TET-regulated gene

expression by MRI, as well as independent validation by

fluorescence microscopy and histology, in genetically identi-

cal cells or tumors. We show here that overexpression of

ferritin H-chain in C6 rat glioma cells under TET regulation

(C6-TET-EGFP-HA-ferritin) increased cellular iron content in

vitro and significantly increased MR relaxation rates, both in

vitro and in vivo, without altering tumor growth. These results

indicate the potential use of ferritin as a reporter for dynamic

detection of gene expression by noninvasive MRI.

Figure 1. TET-regulated expression of EGFP-HA-ferritin as a multimodality endogenous reporter of gene expression for MRI and optical imaging. C6-TET-EGFP-

ferritin was generated by the infection of C6 cells with viruses carrying the TET transactivator (tTA) under a constitutive promoter (pRev-tTA-OFF-IN vector). The

cells were then transfected to express TET-EGFP-HA-ferritin using a bidirectional vector (pBI-EGFP-HA-Ferr vector). Selected clones showed overexpression of

EGFP and HA-tagged ferritin, both of which were tightly suppressed by administration of TET (+Tet). In the absence of TET (�Tet), overexpression of ferritin leads

to redistribution of intracellular ferritin iron and chelation of intracellular free iron, thereby generating MR contrast by increasing R1 and R2 relaxation rates. Iron

homeostasis is restored by the compensatory expression of transferrin receptor and increased iron uptake, providing further gain in MR contrast.
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Materials and Methods

Construction of C6-TET-EGFP-HA-Ferritin Cells

The murine ferritin H-chain cDNA (GenBank accession

no. NM-010239) with an HA (influenza hemagglutinin)

tag (HA-ferritin) and a Kozak sequence at the N-terminus

was generated by reverse transcription polymerase chain

reaction (RT-PCR). Retroviral gene delivery and expres-

sion system RevTet-Off-IN (Clontech, Palo Alto, CA) was

used to establish C6 cells expressing murine HA-ferritin

cDNA. HA-ferritin cDNA was cloned downstream of the

TET response element in the bidirectional pBI-EGFP

vector (Clontech) to form pBI-EGFP-HA-ferritin construct

(Figure 1). Packaging cells (PT67; Clontech) were trans-

fected with pRevTet-Off-IN, and the virus containing super-

natant was used to infect C6 cells. Stable C6 cells

expressing C6pRevTet-Off were selected with neomycin

(400 ml; Gibco-BRL, Life Technologies, Paisley, Scotland,

UK) and served as parental cells for cotransfection with

pBI-EGFP-HA-ferritin and pEIRES-Puro vector (20:1 molar

ratio) using FuGene 6 (Roche Diagnostics Corporation,

Mannheim, Germany). EGFP-expressing cells were se-

lected and expression of ferritin was monitored by Western

blot analysis. Stable cell populations were maintained in

DMEM containing the Tet system–approved and USDA-

approved FBS (DB Biosciences; Clontech, Palo Alto, CA)

supplemented with neomycin (400 mg/ml; Gibco-BRL/Life

Technologies) and puromycin (2.5 mg/ml; Sigma Chemical

Co., St. Louis, MO).

Neutral Red Staining of Viable Cells

Cells (2 � 104) were grown in a 96-well tissue culture

plate. After 24, 48, or 72 hours, the medium was discarded

and cells were stained (0.4% NR solution; 90 minutes, room

temperature), washed (1% formaldehyde, 1% CaCl), and

destained (50% ethanol, 1% acetic acid). Optical densities

were read at 595 nm [21].

Western Blot Analysis

Cells (3 � 105) were lysed in RIPA buffer [0jC; 20 mM

Tris, pH 7.4, 137 mM 10% glycerol, 0.5% (wt/vol) sodium

deoxycholate, 0.1% (wt/vol) sodium dodecyl sulfate (SDS),

1% Triton X-100, 2 mM EDTA; 200 ml of phenylmethylsul-

fonyl fluoride (PMSF; 1 mM), and protease inhibitor cocktail

(Sigma Chemical Co.)]. Equal amounts of protein (30 mg/
lane; Bradford method) were electrophoresed (15% SDS

polyacrylamide gel). Blocked membranes [2% BSA in

10 mM Tris-buffered saline, 0.05% Tween (TBST) 3 hours,

24jC] were incubated overnight (4jC) with either anti-HA

monoclonal antibody (HA.11, 1:1000; Covance, Inc., Berkeley,

CA), anti-GFP rabbit polyclonal antibody (1:5000; Abcam

Ltd., Cambridge Science Park, UK), or anti-actin polyclonal

antibody (1:1000; Sigma Chemical Co.). Membranes were

washed (�3) with TBST and incubated with horseradish

peroxidase– labeled antibodies (1: 10,000; Zymed, Inc.,

San Francisco, CA).

MRI of Cell Suspension

Cells were suspended in 0.2 ml of agarose (1% in PBS) in

triplicates in a 96-well plate (2.5 � 105 cells/well). R1 and R2

relaxation rates were determined from spin-echo images at

4.7 T on a horizontal Bruker Biospec spectrometer (Bruker,

Karlsruhe, Germany) using a birdcage excitation coil (R1: 12

repetition times: 5000, 2000, 1000, 800, 700, 600, 500, 400,

300, 200, 100, and 50 milliseconds; TE 10 milliseconds; R2:

multiecho spin echo; TR 5000 milliseconds; eight echo

times: 10, 20, 30, 40, 50, 60, 70, and 80 milliseconds; two

averages; spectral width 50,000 Hz; matrix 128 � 128;

FOV 40 � 40 mm). A horizontal slice was selected using

orthogonal images, through the center of the cell suspension

of all wells (2 mm slice thickness at the center of 6 mm in

each well).

In Vivo MRI

Animal experiments were approved by the Weizmann

Institutional Animal Care and Use Committee. C6-TET-

EGFP-HA-ferritin cells were inoculated (subcutaneously;

106 cells/mouse) in the hind limb of CD1-nude mice (fe-

males, 6–10 weeks, 28–30 g). Ferritin overexpression was

suppressed by addition of TET to the drinking water [+Tet,

Tevacycline; 0.5 mg/ml and 3% sucrose, three times a week

starting 2 days before inoculation; Teva Pharmaceutical

Industries Ltd., Petah Tikva, Israel) or kept on (�Tet; 3%

sucrose only). Three experiments were conducted (�Tet, n =

12; +Tet, n = 15). Mice were imaged once in two experiments

and three times in the third experiment, when tumor diameter

was 4 to 6 mm.

MRI was acquired at 4.7 T using birdcage excitation coil

and actively decoupled 1.5-cm surface detection coil. Anes-

thesized mice (ketamine 75 mg/kg ip; Fort Dodge Animal

Health, Fort Dodge, IA; xylazine 3 mg/kg; Vitamed Ltd., Bat

Yam, Israel) were positioned with the tumor centered on the

surface coil. Coronal single-slice spin echo images were

selected on orthogonal images through the center of the

tumor (R1: five repetition times: 2000, 1000, 500, 200, and

100 milliseconds; TE 20 milliseconds; R2: multiecho spin

echo; TR 2000; four echo times: 20, 40, 60, and 80 milli-

seconds; two averages; spectral width 50,000 Hz;, FOV 20�
20 mm; slice thickness 1 mm; matrix 128 � 128; in-plane

resolution 156 mm).

Analysis of MRI Data

Images were zero-filled to 256 � 256 so as to improve

spatial resolution by reducing partial volume artifacts [22].

Pixel-by-pixel single exponential fits of signal intensity (I) as a

function of TR or TE were done to generate longitudinal (R1)

and transverse (R2) relaxation maps, respectively (MATLAB

software; MathWorks, Inc. Hill Drive, Natick, MA):

Analysis of R1 : I ¼ I0ð1� e�TR�R1Þ

Analysis of R2 : I ¼ I0e
�TE�R2

Changes in relaxation rates were determined by selection

of a region of interest (for tumors or cell suspension) on the
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relaxation maps. Data are presented as mean ± SD of all

data points. P values reported were derived by unpaired,

two-tailed Student’s t test analysis.

Analysis of Gene Expression in Tumors

Total EGFP fluorescence was determined on formalde-

hyde-fixed whole tumors. Histologic tumor sections were

stained for HA-ferritin using fluorescein-labeled anti-HA an-

tibody [1:50, 1 hour; HA.11 monoclonal antibody (Covance,

Inc.) labeled with 5(6)-carboxyfluorescein, succinimidyl es-

ter; Molecular Probes, Inc., Eugene, OR], and for EGFP

using biotinylated goat anti-GFP antibody (1:100, 1 hour;

Abcam Ltd.) and ABC reagent (Vector Laboratories, Inc.

Burlingame, CA), visualized using DAB (Bio-Rad Laborato-

ries, Hercules, CA).

Determination of Intracellular Iron Content

Inductively coupled plasma atomic emission spectrome-

try [ICP-AES; Optima 3300, Perkin-Elmer, Boston, MA) was

used to determine iron content in C6 cells (106 per sample; +/

�Tet; suspended in 50 ml of HNO3, 1 hour at 90jC and

diluted in 2 ml of DDW). In addition, intracellular iron was

stained with Prussian Blue (Sigma Chemical Co.).

Results

Overexpression of Ferritin H-Chain Leads to Elevated

Intracellular Iron Content

C6 rat glioma cells were transfected to express the murine

H-chain of ferritin under TET regulation. Two clones (cloned 1

and 2) were selected, in which significant overexpression of

both HA-tagged ferritin (HA-ferritin) and EGFP could be

effectively suppressed by TET (C6-TET-EGFP-HA-ferritin;

Figure 2). Thus, both EGFP and HA tag could be used for

independent validation of the expression of the transgene.

The cells were cultured in the absence or presence of TET,

and activation of expression of the transgene was initially

evaluated by fluorescence microscopy of EGFP (Figure 2a).

Western blot analysis of the HA-ferritin showed silencing of

overexpression on addition of TET, in a time-dependent man-

ner and in correlation with EGFPexpression level (Figure 2b).

The impact of ferritin overexpression on iron balance was

assessed by ICP-AES andPrussian Blue staining (Figure 2, c

and d). Staining cells with Prussian Blue showed a dose-

dependent suppression of iron uptake by TET (Figure 2c).

Intracellular iron uptake in response to overexpression of

ferritin, in the absence of TET, was confirmed by ICP-AES

analysis, showing a large rise of 27% and 66% in intracellular

iron content for clones 1 and 2, respectively (Figure 2d ).

Overexpression of Ferritin H-Chain Does Not Affect Cell

Proliferation

The impact of ferritin overexpression was evaluated by

checking cell proliferation and viability in vitro and tumor

progression in vivo as well as by histologic evaluation of

tumor specimens. Addition of TET followed by suppression of

ferritin overexpression did not cause any significant change

in the rate of cell proliferation up to 72 hours (Figure 3). In vivo

tumor progression appeared similar in mice supplied either

Figure 2. TET-regulated expression of EGFP-HA-ferritin in C6 rat glioma

cells augments iron uptake. (a) C6-TET-EGFP-HA-ferritin cells (clone 2) were

grown in culture plates in the presence or absence of TET (48 hours; 1 �g/ml).

Confluent cell layers were examined for EGFP fluorescence (upper panel)

and in combination with bright field (lower panel). Scalebar = 50 �m. (b) Time-

dependent expression of EGFP and HA-ferritin in C6 cells as a response to

TET switch (1 �g/ml) was determined by Western blot analysis. �-Actin was

used to normalize protein amounts. (c) Prussian Blue analysis of dose-

dependent TET-induced (48 hours) iron uptake into the cells. Staining intensity

was quantified by NIH image. (d) Quantification of intracellular iron content

by ICP-AES (1�g/ml; 48 hours). Close and open bars represent clones 1 and 2,

respectively.
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with TET and sucrose in the drinking water or inmice supplied

only with sucrose (Figure 3). Hematoxylin–eosin–stained

histologic sections showed prevalence of multinucleated

giant tumor cells and, in the rim of some tumors, also infil-

tration of inflammatory cells, mainly lymphocytes and neu-

trophils. The tumors were highly vascular, showing a high

fraction of stroma endothelial cells. No detectable patho-

logic differences were associated with expression of the trans-

gene (Figure 4a).

TET-Regulated Overexpression of Ferritin H-Chain Is

Detectable in Tumor Samples

Subcutaneous C6-TET-EGFP-HA-ferritin tumors exam-

ined ex vivo by fluorescence microscopy and immunohisto-

chemistry staining of EGFP showed a significant difference

in expression of EGFP, consistent with the effect of the TET

switch (Figure 4, b and c). Fluorescence intensity was sup-

pressed by addition of TET to the drinking water (Figure 4c).

Staining of histologic sections with anti-GFP antibodies as

well as staining of the HA-tagged ferritin revealed that

administration of TET switched off the expression of the

transgene (Figure 4, b and d ). However, overexpression in

the absence of TET was not observed uniformly in all tumor

cells. Expression was particularly elevated in the multinucle-

ated giant tumor cells. HA tag or EGFP-stained cells occu-

pied less than 10% of the tumors not treated with TET. As

expected, infiltrating tumor stroma cells did not express the

transgene. The fraction of labeled cells was similar in tumors

of TET-treated mice, but the level of expression in these cells

was significantly reduced (Figure 4, b and d ).

Overexpression of Ferritin H-Chain Is Detectable by MRI

In Vitro

The sensitivity for the detection of expression of the

transgene by MRI depends on the density of the expressing

cells, the level of expression, and the corresponding changes

in iron content. Although the significant change in expression

level and the robust change in iron content were encourag-

ing, the very low percentage of cells showing a high expres-

sion in tumors provided a challenge for detection by MRI. We

thus tested the ability to detect changes in MRI relaxation

rates in cell suspensions using a low density of cells (2.5 �
105 cells suspended in 0.2 ml of agarose). This cell density is

40-fold lower than previously reported for in vitro MR detec-

tion of TET-regulated expression of tyrosinase [11].

In vitro MRI analysis of longitudinal (R1) and transverse

(R2) relaxation rates of cell suspensions showed highly

significant changes with administration of TET (Figure 5).

The enhanced relaxation rate in the absence of TET was

consistent with induced expression of the transgene and with

Figure 3. Expression of ferritin does not affect the growth of C6-TET-EGFP-HA-ferritin cells in vitro or in vivo. (a) In vitro growth rate of C6-TET-EGFP-HA-ferritin

cells cultured in the absence or presence of TET (1 �g/ml; up to 72 hours) calculated using neutral red assay (n = 3–5; mean ± SD). (b) In vivo growth rate of C6-

TET-EGFP-HA-ferritin tumors measured from MR images. C6-TET-EGFP-HA-ferritin cells (clone 1) were inoculated in the hind limb of nude mice and the mice

were supplied with TET and sucrose (n = 7; or sucrose only, n = 4) in drinking water for 4 weeks (mean ± SD).
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the measured increase in intracellular iron (Figure 2). Thus,

both clones revealed that R1 and R2 were significantly

elevated in the absence of TET, and were lower when cells

were treated with TET, thereby suppressing overexpression

of the transgene (two-tailed unpaired, P V .0006). These

results demonstrate the high sensitivity of MRI relaxation

rates and ferritin as a reporter, which can be utilized for

the detection of changes in gene expression even at very

low cell density.

In Vivo MRI Detection of TET-Induced Expression of Ferritin

H-Chain in Tumors

In order to determine the ability to detect changes in

relaxivity associated with induced gene expression in vivo,

C6-TET-EGFP-HA-ferritin cells were inoculated subcutane-

ously in CD-1 nude mice. TET was supplied in the drinking

water in order to suppress the overexpression of EGFP and

ferritin in the tumor (+Tet), whereas the transgene was

overexpressed in the absence of TET (�Tet). In three

different experiments, both R1 and R2 relaxation rates were

elevated in the ferritin-overexpressing tumors (�Tet). An

example of one study is presented in Figure 6 for four

transgene-expressing (�Tet) mice and seven mice in which

transgene expression was suppressed (+Tet; Figure 6). R1

was significantly elevated at early stages of tumor growth,

whereas R2 was significantly increased by switching on the

expression of the transgene throughout the course of tumor

growth (two-tailed unpaired, P < .05; Figure 6).

Discussion

A number of MRI reporters of gene expression were pub-

lished so far, all of which were dependent on exogenous

contrast agents for generation of detectable contrast

changes [1–7,10,11]. In the study reported here, the H-chain

of ferritin was applied as the first endogenous intracellular

reporter of gene expression that is detectable by MRI, both

in vitro (in cell suspensions) and in vivo (in solid tumors). In

both cases, no administration of exogenous contrast agents

was required.

Independent validation of MRI reporters is important due

to the indirect detection of contrast changes in MRI that

depend on changes in the relaxation rates of the abundant

water signal. To gain such a validation, expression of both

EGFP and HA-tagged ferritin was placed under a tight TET

switchable promoter using a bidirectionally expression vec-

tor. Thus, independent detection and cross-validation of

changes in the expression of the reporter transgene were

provided by measurements of fluorescence and MR relaxa-

tion rates in genetically identical cells or tumors. Sensitivity for

detection of ferritin was high; thus, TET withdrawal and ac-

tivation of ferritin expression resulted in significant changes

in relaxation rates even for very low densities of cells.

The use of ferritin as a reporter for MRI is based on the

hypothesis that sensitivity for the detection of ferritin over-

expression by MRI would be enhanced by redistribution of

intracellular iron as well as by a physiological response

leading to net intracellular iron uptake. The bases for this

Figure 4. TET-regulated overexpression of EGFP-HA-ferritin in tumors. C6-

TET-EGFP-HA-ferritin cells (clone 1) were inoculated in the hind limb of nude

mice. TET and sucrose (or sucrose only) were supplied in drinking water and

the tumors were retrieved for histology at the end of 4 weeks. (a) Histologic

sections stained with hematoxylin–eosin. Multinucleated giant tumor cells

(arrowheads) and infiltrating inflammatory cells at the tumor rim (arrows) are

indicated. (b) Histologic sections stained with anti-GFP polyclonal antibody

(brown), counterstained with hematoxylin. (c) Expression of EGFP in

subcutaneous tumors and skin whole mounts visualized by fluorescent

microscopy. (d) Histologic sections stained with fluorescent anti-HA antibody

(green) and nuclear stain (Hoechst, Molecular Probes, Inc., Eugene, OR;

blue). Scalebar = 50 �m (a and b), 1 mm (c), and 200 �m (d).
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work are previous studies that demonstrated the ferroxida-

tion reaction catalyzed by the ferritin H-chain [16,23]; the

anomalies of ferritin relaxivity, which is particularly high for

ferritin at low iron loading [19,24–26]; and the demonstration

of redistribution of iron between ferritin molecules [27]. In

addition to that, induction of iron deficiency mechanisms in

cells exposed to overexpression of H-ferritin was reported,

including induced expression of transferrin receptor and

increased iron uptake [16].

The anomalous relaxivity of ferritin has been well charac-

terized [19,24–26]. Although ferritin can carry a core of a few

thousand iron atoms, detailed studies by Vymazal et al.

[25,26] revealed maximal relaxivity at a very low loading

factor of 13 ± 14 iron atoms per molecule These results imply

that induced expression of apoferritin could result in alter-

ations of R1 and R2 relaxation rates and thus lead to changes

in MRI contrast, even in the absence of a change in total

intracellular iron content, provided that redistribution of iron

between ferritin complexes is possible. Indeed, migration of

iron atoms that are not incorporated into mature ferrihydrite

particles between ferritin molecules was demonstrated by

Mossbauer spectroscopy [27]. The higher sensitivity of R2

relative to R1 for the detection of ferritin expression, as

reported here, and the corresponding larger variability in R1

are in accord with the mechanism of relaxivity and previous

studies of ferritin suspension [28].

However, the effects of overexpression of ferritin on MR

contrast are not limited to the redistribution of iron. In fact, as

shown here, overexpression of ferritin resulted in a signifi-

cant increase in net intracellular iron content, which was

detected by Prussian Blue staining and ICP-AES. The com-

pensation for ferritin expression by augmented iron uptake is

consistent with previous reports that overexpression of the

ferritin H-chain induced expression of transferrin receptor

and increased iron uptake [16].

The nonuniform relaxation rates in the tumor are consis-

tent with the variable degree of transgene expression as

seen by immunohistochemistry. It should be noted that

Figure 5. In vitro MRI detection of switchable ferritin expression in C6 rat glioma cells. (a and b) R1 and R2 relaxation rate maps of C6-TET-EGFP-HA-ferritin cell

samples suspended in agarose and placed in a 96-well plate. Two clones are shown incubated with and without TET (5 days; 1 �g/ml). (c and d) Relaxation rates

derived from the R1 and R2 maps (mean ± SD; n = 3, P values: two-tailed unpaired t-test).
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relaxation rates include contribution from other factors, in

addition to ferritin. Selection of ferritin contribution could

perhaps be facilitated by its unique field dependence [29].

One of the requirements from a reporter is that it will have

minimal impact on the studied process. Due to the high

reactivity of iron, particularly in oxygenated environment,

homeostasis of intracellular iron is fine-tuned by a panel of

iron-regulated genes whose expression and stability are

regulated at the mRNA level through specific iron response

elements [30–32]. Ferritin expression is typically induced in

the presence of elevated levels of iron; its expression is

suppressed, whereas expression of transferrin receptor is

induced in iron deficiency. The observed increase in iron

content suggested that cells were able to compensate for

iron chelation into ferritin by inducing iron uptake. It is

important to note that overexpression of ferritin, whose role

is to detoxify free iron by its sequestration, is expected to

produce less undesirable physiological effects than over-

expression of transferrin receptor, a previously publishedMR

reporter that could elevate the level of reactive soluble iron in

cells [2]. Overexpression of ferritin in an iron-independent

manner could result in iron deficiency, and accordingly,

affect cell proliferation; however, as shown here, overex-

pression of H-ferritin did not alter growth rate in vitro or

in vivo. These results are in line with previous studies of

MEL cells [33] but in contrast to studies of HeLa cells [16],

suggesting variability among cells in sensitivity to changes

in iron homeostasis.

The high sensitivity for detection of ferritin by MRI is

manifested by the fact that the number of cells that we were

able to detect in vitro was 40-fold lower than that reported for

TET-regulated expression of tyrosinase [11]. Furthermore, it

Figure 6. In vivo MRI detection of switchable ferritin expression in C6 tumors. MRI of ferritin-expressing tumors at different times after inoculation of C6-TET-

EGFP-HA-ferritin tumor cells (clone 1) in the hind limb of nude mice. TET and sucrose (or sucrose only) were supplied in drinking water, starting 2 days before

inoculation. (a) R1 and R2 maps of tumor regions overlaid on the MR images are shown for two representative mice from each group. (b) R1 and R2 values (mean ±

SD) at the tumor region in the presence (ferritin off; n = 7) or absence (ferritin on; n = 4) of TET in drinking water. All four �Tet mice were imaged three times each

(on days 14, 19, and 28 after tumor inoculation). All seven +Tet mice were imaged on the first (day 14) and second (day 19) MRI sessions, and five of these mice

were scanned also on the third (day 28) session. *P < .05: two-tailed unpaired t-test. Scalebar = 2.5 mm.
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should be noted that tyrosinase contrast was detectable only

after supplementation of exogenously administered iron,

whereas ferritin contrast reported here was endogenous

and was achieved with no exogenously administered con-

trast agents. Thus, despite the low fraction of transgene-

expressing cells within subcutaneous tumors, the change in

relaxation rate was significant and was detectable through-

out tumor progression. Combination of ferritin expression

with HA-tag and EGFP as reported here provides a means

for independent validation and complementary analysis by

optical imaging.

In summary, the results presented here demonstrate that

the use of ferritin as a reporter for in vivo mapping of gene

expression by MRI is feasible. The first demonstration of this

approach, as reported here for tumors, may aid the tracking

of tumor cell migration. However, this approach could open

many additional exciting possibilities for studying the activa-

tion of genes during development and in disease models, as

well as for specific labeling of cells for tracking cell recruit-

ment and migration. The use of endogenous reporter gene

as developed here would be particularly beneficial in those

cases where administration of contrast material is compro-

mised by barriers, including embryonic development and the

central nervous system.
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