2 research outputs found
Simulation of Micro-Electronic FlowFET Systems
A microelectronic fluidic system has been investigated by modeling and 3D simulation of fluid flow controlled by an applied gate voltage. The simulations have helped to characterize a novel FlowFET (a fluidic Field Effect Transistor) device under fault-free conditions. The FlowFET operates by applying a voltage field from a gate electrode in the insulated side wall of a microchannel to modulate the ␣-potential at the shear plane [1]. The change in ␣-potential can be used to control both the magnitude and direction of the electroosmotic flow in the microchannel
Modeling of Micro-Electronic Fluidic Systems
A microelectronic fluidic system is studied using modeling and simulation of fluid flow controlled by applying gate voltage. 2D simulations were used to characterize the fluidic Field Effect Transistor (FlowFET) device under fault-free conditions. The FlowFET operates by applying a voltage from a gate electrode in the insulated side wall of a microchannel, to modulate the z-potential at the shear plane. The change in z-potential can be used to control both the magnitude and the direction of the electroosmotic flow in the microchannel