174 research outputs found

    Optical absorption spectra of metal oxides from time-dependent density functional theory and many-body perturbation theory based on optimally-tuned hybrid functiona

    Get PDF
    Using both time-dependent density functional theory (TDDFT) and the “single-shot” GW plus Bethe-Salpeter equation (GW-BSE) approach, we compute optical band gaps and optical absorption spectra from first principles for eight common binary and ternary closed-shell metal oxides (MgO, Al2O3, CaO, TiO2, Cu2O, ZnO, BaSnO3, and BiVO4), based on the nonempirical Wannier-localization-based, optimally tuned, screened range-separated hybrid functional. Overall, we find excellent agreement between our TDDFT and GW-BSE results and experiment, with a mean absolute error smaller than 0.4 eV, including for Cu2O and ZnO that are traditionally considered to be challenging for both methods

    Importance of nonuniform Brillouin zone sampling for ab initio Bethe-Salpeter equation calculations of exciton binding energies in crystalline solids

    Get PDF
    Excitons are prevalent in semiconductors and insulators, and their binding energies are critical for optoelectronic applications. The state-of-the-art method for first-principles calculations of excitons in extended systems is the ab initio GW-Bethe-Salpeter equation (BSE) approach, which can require a fine sampling of reciprocal space to accurately resolve solid-state exciton properties. Here we show, for a range of semiconductors and insulators, that the commonly employed approach of uniformly sampling the Brillouin zone can lead to underconverged exciton binding energies, as impractical grid sizes are required to achieve adequate convergence. We further show that nonuniform sampling of the Brillouin zone, focused on the region of reciprocal space where the exciton wave function resides, enables efficient rapid numerical convergence of exciton binding energies at a given level of theory. We propose a well-defined convergence procedure, which can be carried out at relatively low computational cost and which in some cases leads to a correction of previous best theoretical estimates by almost a factor of 2, qualitatively changing the predicted exciton physics. These results call for the adoption of nonuniform sampling methods for ab initio GW-BSE calculations and for revisiting previously computed values for exciton binding energies of many systems

    Resonant and bound states of charged defects in two-dimensional semiconductors

    Get PDF
    A detailed understanding of charged defects in two-dimensional semiconductors is needed for the development of ultrathin electronic devices. Here, we study negatively charged acceptor impurities in monolayer WS2 using a combination of scanning tunneling spectroscopy and large-scale atomistic electronic structure calculations. We observe several localized defect states of hydrogenic wave function character in the vicinity of the valence band edge. Some of these defect states are bound, while others are resonant. The resonant states result from the multivalley valence band structure of WS2, whereby localized states originating from the secondary valence band maximum at Γ hybridize with continuum states from the primary valence band maximum at K/Kâ€Č. Resonant states have important consequences for electron transport as they can trap mobile carriers for several tens of picoseconds

    Transparent dense sodium

    Full text link
    Under pressure, metals exhibit increasingly shorter interatomic distances. Intuitively, this response is expected to be accompanied by an increase in the widths of the valence and conduction bands and hence a more pronounced free-electron-like behaviour. But at the densities that can now be achieved experimentally, compression can be so substantial that core electrons overlap. This effect dramatically alters electronic properties from those typically associated with simple free-electron metals such as lithium and sodium, leading in turn to structurally complex phases and superconductivity with a high critical temperature. But the most intriguing prediction - that the seemingly simple metals Li and Na will transform under pressure into insulating states, owing to pairing of alkali atoms - has yet to be experimentally confirmed. Here we report experimental observations of a pressure-induced transformation of Na into an optically transparent phase at 200 GPa (corresponding to 5.0-fold compression). Experimental and computational data identify the new phase as a wide bandgap dielectric with a six-coordinated, highly distorted double-hexagonal close-packed structure. We attribute the emergence of this dense insulating state not to atom pairing, but to p-d hybridizations of valence electrons and their repulsion by core electrons into the lattice interstices. We expect that such insulating states may also form in other elements and compounds when compression is sufficiently strong that atomic cores start to overlap strongly.Comment: Published in Nature 458, 182-185 (2009

    Design Rules for Self-Assembly of 2D Nanocrystal/Metal-Organic Framework Superstructures.

    Get PDF
    We demonstrate the guiding principles behind simple two dimensional self-assembly of MOF nanoparticles (NPs) and oleic acid capped iron oxide (Fe3 O4 ) NCs into a uniform two-dimensional bi-layered superstructure. This self-assembly process can be controlled by the energy of ligand-ligand interactions between surface ligands on Fe3 O4 NCs and Zr6 O4 (OH)4 (fumarate)6 MOF NPs. Scanning transmission electron microscopy (TEM)/energy-dispersive X-ray spectroscopy and TEM tomography confirm the hierarchical co-assembly of Fe3 O4 NCs with MOF NPs as ligand energies are manipulated to promote facile diffusion of the smaller NCs. First-principles calculations and event-driven molecular dynamics simulations indicate that the observed patterns are dictated by combination of ligand-surface and ligand-ligand interactions. This study opens a new avenue for design and self-assembly of MOFs and NCs into high surface area assemblies, mimicking the structure of supported catalyst architectures, and provides a thorough fundamental understanding of the self-assembly process, which could be a guide for designing functional materials with desired structure

    Simple Metals at High Pressure

    Full text link
    In this lecture we review high-pressure phase transition sequences exhibited by simple elements, looking at the examples of the main group I, II, IV, V, and VI elements. General trends are established by analyzing the changes in coordination number on compression. Experimentally found phase transitions and crystal structures are discussed with a brief description of the present theoretical picture.Comment: 22 pages, 4 figures, lecture notes for the lecture given at the Erice course on High-Pressure Crystallography in June 2009, Sicily, Ital

    Mechanically-Controlled Binary Conductance Switching of a Single-Molecule Junction

    Full text link
    Molecular-scale components are expected to be central to nanoscale electronic devices. While molecular-scale switching has been reported in atomic quantum point contacts, single-molecule junctions provide the additional flexibility of tuning the on/off conductance states through molecular design. Thus far, switching in single-molecule junctions has been attributed to changes in the conformation or charge state of the molecule. Here, we demonstrate reversible binary switching in a single-molecule junction by mechanical control of the metal-molecule contact geometry. We show that 4,4'-bipyridine-gold single-molecule junctions can be reversibly switched between two conductance states through repeated junction elongation and compression. Using first-principles calculations, we attribute the different measured conductance states to distinct contact geometries at the flexible but stable N-Au bond: conductance is low when the N-Au bond is perpendicular to the conducting pi-system, and high otherwise. This switching mechanism, inherent to the pyridine-gold link, could form the basis of a new class of mechanically-activated single-molecule switches

    Stabilization of weak ferromagnetism by strong magnetic response to epitaxial strain in multiferroic BiFeO3

    Get PDF
    Multiferroic BiFeO3 exhibits excellent magnetoelectric coupling critical for magnetic information processing with minimal power consumption. However, the degenerate nature of the easy spin axis in the (111) plane presents roadblocks for real world applications. Here, we explore the stabilization and switchability of the weak ferromagnetic moments under applied epitaxial strain using a combination of first-principles calculations and group-theoretic analyses. We demonstrate that the antiferromagnetic moment vector can be stabilized along unique crystallographic directions ([110] and [-110]) under compressive and tensile strains. A direct coupling between the anisotropic antiferrodistortive rotations and the Dzyaloshinskii-Moria interactions drives the stabilization of the weak ferromagnetism. Furthermore, energetically competing C- and G-type magnetic orderings are observed at high compressive strains, suggesting that it may be possible to switch the weak ferromagnetism "on" and "off" under the application of strain. These findings emphasize the importance of strain and antiferrodistortive rotations as routes to enhancing induced weak ferromagnetism in multiferroic oxides.ope
    • 

    corecore