11,053 research outputs found

    Long-term changes in the water quality of rainfall, cloud water and stream water for moorland, forested and clear-felled catchments at Plynlimon, mid-Wales

    Get PDF
    Long term changes in the water quality of rainfall, cloud water and stream waters draining acidic and acid sensitive moorland and forested catchments at Plynlimon, mid-Wales, are examined for the period 1983 to 2001. Atmospheric inputs of chloride and sulphate are influenced by the relative inputs of clean maritime and polluted land based air masses. There is no systematic increase or decrease over time for chloride and non-sea-salt sulphate. Rather, there is a decadal scale process possibly representative of the influence of the North Atlantic Oscillation that affects the maritime and pollution climate of the Atlantic seaboard of the UK. Over 17 years of study, there may be a small decrease in non-sea-salt sulphate of about 10 &#956;eq l<sup>-1</sup> and a small improvement in acid neutralising capacity of about 20 to 30 &#956;eq l<sup>-1</sup> in rainfall. There is a clear improvement in cloud water chemistry with respect to pollutant components (ammonium, nitrate, non-sea-salt sulphate) and acidity (acid neutralising capacity improved by about 300 &#956;eq l<sup>-1</sup>) through the study period. Many of the changes in cloud water chemistry are similar to rainfall over the same period except the magnitude of change is larger for the cloud water. Within the streams, there is some evidence for reductions in acidity as reflected by acid neutralising capacity becoming less negative. For one stream, deforestation occurred during the sampling period and this led to large increases in nitrate and smaller increases in aluminium midway through the study period. However, the climate and hydrological variability largely masked out other changes. The current analysis provides only a start to identifying trends for such a complex and variable environmental system. The need for strong statistical tools is emphasised to resolve issues of: (a) hydrological induced water quality variability, (b) changing soil and groundwater &quot;endmember&quot; chemistry contribution to the stream and (c) the non-linear patterns of change. Nonetheless, the analysis is enhanced by examining trends in chemistry for yearly averages and yearly average low catch and high catch rainfall and cloud water events as well as low and high flow stream chemistry. This approach allows trends to be examined within the context of endmember mixing.</p> <p style='line-height: 20px;'><b>Keywords: </b>Calcium, aluminium, ammonium, pH, Gran alkalinity, ANC, nitrate, chloride, sulphate, Plynlimon, cloud, mist, rainfall, stream, acidification, North Atlantic Oscillation, trend

    Long-term changes in the water quality of rainfall, cloud water and stream water for moorland, forested and clear-felled catchments at Plynlimon, mid-Wales

    No full text
    International audienceLong term changes in the water quality of rainfall, cloud water and stream waters draining acidic and acid sensitive moorland and forested catchments at Plynlimon, mid-Wales, are examined for the period 1983 to 2001. Atmospheric inputs of chloride and sulphate are influenced by the relative inputs of clean maritime and polluted land based air masses. There is no systematic increase or decrease over time for chloride and non-sea-salt sulphate. Rather, there is a decadal scale process possibly representative of the influence of the North Atlantic Oscillation that affects the maritime and pollution climate of the Atlantic seaboard of the UK. Over 17 years of study, there may be a small decrease in non-sea-salt sulphate of about 10 ?eq l-1 and a small improvement in acid neutralising capacity of about 20 to 30 ?eq l-1 in rainfall. There is a clear improvement in cloud water chemistry with respect to pollutant components (ammonium, nitrate, non-sea-salt sulphate) and acidity (acid neutralising capacity improved by about 300 ?eq l-1) through the study period. Many of the changes in cloud water chemistry are similar to rainfall over the same period except the magnitude of change is larger for the cloud water. Within the streams, there is some evidence for reductions in acidity as reflected by acid neutralising capacity becoming less negative. For one stream, deforestation occurred during the sampling period and this led to large increases in nitrate and smaller increases in aluminium midway through the study period. However, the climate and hydrological variability largely masked out other changes. The current analysis provides only a start to identifying trends for such a complex and variable environmental system. The need for strong statistical tools is emphasised to resolve issues of: (a) hydrological induced water quality variability, (b) changing soil and groundwater "endmember" chemistry contribution to the stream and (c) the non-linear patterns of change. Nonetheless, the analysis is enhanced by examining trends in chemistry for yearly averages and yearly average low catch and high catch rainfall and cloud water events as well as low and high flow stream chemistry. This approach allows trends to be examined within the context of endmember mixing. Keywords: Calcium, aluminium, ammonium, pH, Gran alkalinity, ANC, nitrate, chloride, sulphate, Plynlimon, cloud, mist, rainfall, stream, acidification, North Atlantic Oscillation, trend

    The impact of conifer harvesting on stream water quality: the Afon Hafren, mid-Wales

    No full text
    International audienceResults for long term water quality monitoring are described for the headwaters of the principal headwater stream of the River Severn, the Afon Hafren. The results are linked to within-catchment information to describe the influence of conifer harvesting on stream and shallow groundwater quality. A 19-year record of water quality data for the Hafren (a partially spruce forested catchment with podzolic soil) shows the classic patterns of hydrochemical change in relation to concentration and flow responses for upland forested systems. Progressive felling of almost two-thirds of the forest over the period of study resulted in little impact from harvesting and replanting in relation to stream water quality. However, at the local scale, a six years' study of felling indicated significant release of nitrate into both surface and groundwater; this persisted for two or three years before declining. The study has shown two important features. Firstly, phased felling has led to minimal impacts on stream water. This contrasts with the results of an experimental clear fell for the adjacent catchment of the Afon Hore where a distinct water quality deterioration was observed for a few years. Secondly, there are localised zones with varying hydrology that link to groundwater sources with fracture flow properties. This variability makes extrapolation to the catchment scale difficult without very extensive monitoring. The implications of these findings are discussed in relation to strong support for the use of phased felling-based management of catchments and the complexities of within catchment processes. Keywords: deforestation, water quality, acidification, pH, nitrate, alkalinity, ANC, aluminium, dissolved organic carbon, Plynlimon, forest, spruce, Afon Hafren, podzo

    The water quality of streams draining a plantation forest on gley soils: the Nant Tanllwyth, Plynlimon mid-Wales

    No full text
    International audienceThe water quality of the Nant Tanllwyth stream in the Plynlimon region of mid-Wales is related to the key hydrobiogeological controls and the effects of conifer harvesting based on an analysis of rain, cloud, stream and groundwater measurements. The results show the normal patterns of stream water quality response to hydrology. Thus, there is a high damping of atmospheric inputs due to storage in a highly heterogeneous soil and groundwater system. Correspondingly, there is a highly dynamic response for components such as calcium, bicarbonate and aluminium. This response links to the relative inputs of acidic and aluminium-bearing soil waters under high flow conditions and base enriched bicarbonate bearing waters from the groundwater areas under baseflow conditions. The introduction of a deep borehole near the main stem of the river opened up a groundwater flow route to the stream and other parts of the catchment. There were two aspects to this. Firstly, it caused a change to the stream water quality, particularly under baseflow conditions, by increasing the concentrations of calcium and magnesium and by reducing the acidity. The monitoring shows that this change has persisted for over eight years and that there is no sign of reversion to pre-borehole times. Secondly, it caused a change in the groundwater level and chemistry at a borehole on the other side of the river. This feature shows that the fracture system is of hydrogeochemical and hydrogeological complexity. The effects of conifer harvesting are remarkable. At the local scale, felling leads to the expected short term increase in nitrate, ammonium and phosphate from the disturbance of the soil and the reduction in uptake into the vegetation. Correspondingly, there is a reduction in sodium and chloride linked to reduced scavenging of atmospheric inputs from cloud water by the vegetation and also due to increased dilution potential due to reductions in transpiration by the trees. However, within the main stream, virtually no change is observed in stream water quality with felling, except for a decrease rather than an expected increase in nitrate concentration. It seems that the increase in phosphate, for a system that is essentially phosphate limiting, has stimulated biological activity in the stream leading to increased uptake of nitrate and ammonium. However, there is little change in the sodium and chloride in the stream and there are important issues of the representative nature of studying small scale drainage areas. Boreholes, introduced to assess the impacts of the felling programme, show unexpected variations in groundwater chemistry. These variations are associated with the complexity of both flow routing and the chemical reactivity within the groundwater and lower soil zones, rather than changes that can be linked specifically to felling. The implications of the study are discussed in relation to both process understanding and forestry management practices. Keywords: water quality, acidification, conifer, harvesting, pH, nitrate, ammonium, phosphate, nutrients, alkalinity, Plynlimon, Wales, Tanllwyth, streams, groundwate

    Lunette: A Two-Lander Discovery-Class Geophysics Mission to the Moon

    Get PDF
    The document “The Scientific Context for the Exploration of the Moon” [1] designated understanding the structure and composition of the lunar interior (to provide fundamental information on the evolution of a differentiated planetary body) as the second highest priority lunar science concept that needed to be addressed. To this end, the Science Mission Directorate formulated the International Lunar Network (ILN) mission concept (web site) that enlisted international partners to enable the establishment of a geophysical network on the lunar surface. NASA would establish the first four “anchor nodes” in the 2018 time frame. These nodes are envisioned to use radioisotope power systems to allow operation of each node for at least 6 years. Each anchor node will contain a seismometer, magnetometer, laser retroreflector, and a heat flow probe [2] and will be distributed across the lunar surface to form a much more widespread network that the Apollo passive seismic, magnetometer, heat flow, and the Apollo and Luna laser retroreflector networks. (Fig. 1). It is planned that the four anchor nodes will be launched on an Atlas 5 launch vehicle and the cost is estimated to exceed that for a New Frontiers mission. What we present here is an alternative to the ILN architecture that will still return the data required to understand the nature of the lunar interior and determine how the Moon evolved

    Abell 2111: An Optical and Radio Study of the Richest Butcher-Oemler Cluster

    Full text link
    We present an in-depth analysis of the Butcher-Oemler cluster A2111, including new optical spectroscopy plus a deep Very Large Array (VLA) radio continuum observation. These are combined with optical imaging from the Sloan Digital Sky Survey (SDSS) to assess the activity and properties of member galaxies. Prior X-ray studies have suggested A2111 is a head-on cluster merger, a dynamical state which might be connected to the high level of activity inferred from its blue fraction. We are able to directly assess this claim, using our spectroscopic data to identify 95 cluster members among 196 total galaxy spectra. These galaxy velocities do not themselves provide significant evidence for the merger interpretation, however they are consistent with it provided the system is viewed near the time of core passage and at a viewing angle >~30 degrees different from the merger axis. The SDSS data allow us to confirm the high blue fraction for A2111, f_b = 0.15 +/- 0.03 based on photometry alone and f_b = 0.23 +/- 0.03 using spectroscopic data to remove background galaxies. We are able to detect 175 optical sources from the SDSS in our VLA radio data, of which 35 have redshift information. We use the SDSS photometry to determine photometric redshifts for the remaining 140 radio-optical sources. In total we identify up to 26 cluster radio galaxies, 14 of which have spectroscopic redshifts. The optical spectroscopy and radio data reveal a substantial population of dusty starbursts within the cluster. The high blue fraction and prevalence of star formation is consistent with the hypothesis that dynamically-active clusters are associated with more active member galaxies than relaxed clusters.Comment: To appear in AJ; 53 pages including 10 figures and several long table

    Europe rules on harm from fluoroquinolone antibiotics

    Get PDF
    No abstract available

    Star Formation and AGN in the Core of the Shapley Supercluster: A VLA Survey of A3556, A3558, SC1327-312, SC1329-313, and A3562

    Full text link
    The core of the Shapley supercluster (A3556, A3558, SC1327-312, SC1329-313, and A3562) is an ideal region in which to study the effects of cluster mergers on the activity of individual galaxies. This paper presents the most comprehensive radio continuum investigation of the region, relying on a 63-pointing mosaic obtained with the Very Large Array yielding an areal coverage of nearly 7 square degrees. The mosaic provides a typical sensitivity of about 80 uJy at a resolution of 16", enabling detection of galaxies with star formation rates as low as 1 solar mass per year. The radio data are complemented by optical imaging in B and R, producing a catalog of 210 radio-detected galaxies with m_R <= 17.36 (M_R <= -19). At least 104 of these radio-detected galaxies are members of the supercluster on the basis of public velocity measurements. Across the entire core of the supercluster, there appears to be a significant deficit of radio galaxies at intermediate optical magnitudes (M_R between -21 and -22). This deficit is offset somewhat by an increase in the frequency with which brighter galaxies (M_R less than -22) host radio sources. More dramatic is the highly significant increase in the probability for fainter galaxies (M_R between -20 and -21) in the vicinity of A3562 and SC1329-313 to be associated with radio emission. The radio and optical data for these sources strongly suggest that these active galaxies are powered by star formation. In conjunction with recent X-ray analysis, this is interpreted as young starbursts related to the recent merger of SC1329-313 with A3562 and the rest of the supercluster.Comment: Accepted by AJ; 50 pages, including 16 figures (for full resolution PDF, see http://mywebpages.comcast.net/nealamiller2/Shapley_pp.pdf
    • …
    corecore