5 research outputs found

    Investigating the effects of exposure to extremely low frequency electromagnetic fields on job burnout syndrome and the severity of depression; the role of oxidative stress

    No full text
    Objectives: This study was designed to investigate the possible effect of exposure to extremely low frequency electromagnetic fields (ELF-EMFs) on occupational burnout syndrome and the severity of depression experienced among thermal power plant workers and the role of oxidative stress. Methods: In this cross-sectional study, 115 power plant workers and 124 administrative personnel of a hospital were enrolled as exposed and unexposed groups, respectively, based on inclusion and exclusion criteria. Levels of oxidative stress biomarkers, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (Cat), and total antioxidant capacity were measured in serum samples. Exposure to electric and magnetic fields was measured using the IEEE Std C95.3.1 standard at each workstation. The burnout syndrome and the severity of depression were assessed using the Maslach Burnout and Beck Depression Inventory. Results: The levels of MDA and SOD were significantly lower in the exposed group than the unexposed group. The exposed group reported a higher prevalence of burnout syndrome and higher depression severity. Multiple linear regression showed that work experience, MDA level, and levels of exposure to magnetic fields are the most important predictor variables for burnout syndrome and severity of depression. In addition, a decrease in the level of Cat was significantly associated with increased burnout syndrome. Conclusion: The thermal power plant workers exposed to ELF-EMFs are at risk of burnout syndrome and depression. These effects may be caused directly by exposure to magnetic fields or indirectly due to increased oxidative stress indices. © 2020 The Authors. Journal of Occupational Health published by John Wiley & Sons Australia, Ltd on behalf of The Japan Society for Occupational Healt

    The effect of noise and dust exposure on oxidative stress among livestock and poultry feed industry workers

    No full text
    Introduction: Simultaneous exposure to noise and dust may have detrimental health effects. This study was conducted to determine the effect of exposure to noise and dust on oxidative stress. Methods: In this cross-sectional study, 82 employees of two livestock and poultry feed factories in Golestan Province, Iran, were selected as the exposed group and 82 office workers were selected as the control group. Occupational noise and dust exposure were measured using a dosimeter, sampling pump, and vinyl chloride filter. Oxidative stress was determined by measuring the levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in blood samples. T-tests, one-way analysis of variance, and multivariate linear regression were used to analyze the data. Results: The levels of MDA and SOD in the exposed group were significantly higher and lower than the control group (p < 0.001), respectively. The results showed the subgroup with both over the threshold dust and noise exposure had the highest MDA levels. The SOD level among those exposed to noise more than the recommended level, in the subgroup with more dust exposure, was significantly less than the subgroup with low noise exposure (p = 0.017). Conclusion: Noise and dust exposure probably increase the level of oxidative stress by increasing the level of lipid peroxidation (MDA) and reducing the level of antioxidant enzymes (SOD). © The Author(s) 2020

    Investigating the effects of vitamins E and C on oxidative stress and hematological parameters among power plant workers: A double-blind randomized controlled clinical trial

    No full text
    The present study aimed to determine the effect of taking antioxidant vitamins including vitamins E and C in reducing oxidative stress levels and improving blood parameters. This double-blind randomized controlled trial study was conducted among the employees working in different parts of a power plant in Semnan, Iran, in 2017. A total of 91 employees were randomly allocated to four groups including vitamin E (400 units per day), vitamin C (1000 mg per day), vitamin E + C for 90 days, and control. The levels of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (Cat), and total antioxidant capacity (TAC) in plasma, and hematological parameters were measured in the participants before and after the intervention. A significant increase was seen in the mean level of SOD, Cat, and TAC in the vitamin-treated groups as well as a significant decrease in mean MOD in vitamin C and vitamin E groups after the intervention. In the intervention groups, the number of red blood cells, hematocrit, and the level of mean corpuscular hemoglobin (MCH) and MCH concentration significantly increased. After the intervention, the mean levels of MDA, SOD, and Cat in vitamin E group were significantly lower than the control group. The mean level of TAC decreased only in the vitamin C group compared to the control group. Taking vitamins E and C as nonenzymatic scavengers of free radicals appears to decrease lipid peroxidation and increase the level of antioxidant enzymes, which can be imbalanced by exposure to extremely low-frequency electromagnetic fields in power plant employees. Furthermore, some hematological parameters can be improved by consuming these vitamins. © The Author(s) 2020
    corecore