802 research outputs found

    Tidal Downsizing Model. IV. Destructive feedback in planets

    Full text link
    I argue that feedback is as important to formation of planets as it is to formation of stars and galaxies. Energy released by massive solid cores puffs up pre-collapse gas giant planets, making them vulnerable to tidal disruptions by their host stars. I find that feedback is the ultimate reason for some of the most robust properties of the observed exoplanet populations: the rarity of gas giants at all separations from 0.1\sim 0.1 to 100\sim 100~AU, the abundance of 10M\sim 10 M_\oplus cores but dearth of planets more massive than 20M\sim 20 M_\oplus. Feedback effects can also explain (i) rapid assembly of massive cores at large separations as needed for Uranus, Neptune and the suspected HL Tau planets; (ii) the small core in Jupiter yet large cores in Uranus and Neptune; (iii) the existence of rare "metal monster" planets such as CoRoT-20b, a gas giant made of heavy elements by up to 50\sim 50\%.Comment: 17 pages, 10 figures, submitted to MNRAS (version significantly expanded to address referee's report

    Grain sedimentation inside giant planet embryos

    Full text link
    In the context of massive fragmenting protoplanetary discs, Boss (1998) suggested that grains can grow and sediment inside giant planet embryos formed at R ~ 5 AU away from the star. Several authors since then criticised the suggestion. Convection may prevent grain sedimentation, and the embryos cannot even form so close to the parent star as cooling is too inefficient at these distances. Here we reconsider the grain sedimentation process suggested by Boss (1998) but inside an embryo formed, as expected in the light of the cooling constraints, at R ~ 100 AU. Such embryos are much less dense and are also cooler. We make analytical estimates of the process and also perform simple spherically symmetric radiation hydrodynamics simulations to test these ideas. We find that convection in our models does not become important before a somewhat massive (~ an Earth mass, this is clarified in a followup paper) solid core is built. Turbulent mixing slows down dust sedimentation but is overwhelmed by grain sedimentation when the latter grow to a centimetres size. The minimum time required for dust sedimentation to occur is a few thousand years, and is a strong function of the embryo's mass, dust content and opacity. An approximate analytical criterion is given to delineate conditions in which a giant embryo contracts and heats up faster than dust can sediment. As Boss et al (2002), we argue that core formation through grain sedimentation inside the giant planet embryos may yield an unexplored route to form giant gas and giant ice planets. The present model also stands at the basis of paper III, where we study the possibility of forming terrestrial planet cores by tidal disruption and photoevaporation of the planetary envelope.Comment: To appear in MNRAS, referred to as "paper I" in serie

    Two-phase model for Black Hole feeding and feedback

    Full text link
    We study effects of AGN feedback outflows on multi-phase inter stellar medium (ISM) of the host galaxy. We argue that SMBH growth is dominated by accretion of dense cold clumps and filaments. AGN feedback outflows overtake the cold medium, compress it, and trigger a powerful starburst -- a positive AGN feedback. This predicts a statistical correlation between AGN luminosity and star formation rate at high luminosities. Most of the outflow's kinetic energy escapes from the bulge via low density voids. The cold phase is pushed outward only by the ram pressure (momentum) of the outflow. The combination of the negative and positive forms of AGN feedback leads to an MσM-\sigma relation similar to the result of King (2003). Due to porosity of cold ISM in the bulge, SMBH influence on the low density medium of the host galaxy is significant even for SMBH well below the MσM-\sigma mass. The role of SMBH feedback in our model evolves in space and time with the ISM structure. In the early gas rich phase, SMBH accelerates star formation in the bulge. During later gas poor (red-and-dead) phases, SMBH feedback is mostly negative everywhere due to scarcity of the cold ISM.Comment: to appear in MNRAS. 9 page

    Close stars and an inactive accretion disk in Sgr A*: Eclipses and flares

    Full text link
    A cold neutral and extremely dim accretion disk may be present as a remnant of a past vigorous activity around the black hole in our Galactic Center (GC). Here we discuss ways to detect such a disk through its interaction with numerous stars present in the central ~0.1 parsec of the Galaxy. The first major effect expected is X-ray and near infrared (NIR) flares arising when stars pass through the disk. The second is eclipses of the stars by the disk. We point out conditions under which the properties of the expected X-ray flares are similar to those recently discovered by Chandra. Since orbits of bright stars are now being precisely measured, the combination of the expected flares and eclipses offers an invaluable tool for constraining the disk density, size, plane and even direction of rotation. The winds of the O-type stars are optically thick to free-free absorption in radio frequencies. If present near Sgr A* core, such powerful stellar winds can modulate and even occult the radio source.Comment: typo in eq. 3 correcte

    Planets, debris and their host metallicity correlations

    Full text link
    Recent observations of debris discs, believed to be made up of remnant planetesimals, brought a number of surprises. Debris disc presence does not correlate with the host star's metallicity, and may anti-correlate with the presence of gas giant planets. These observations contradict both assumptions and predictions of the highly successful Core Accretion model of planet formation. Here we explore predictions of the alternative Tidal Downsizing (TD) scenario of planet formation. In TD, small planets and planetesimal debris is made only when gas fragments, predecessors of giant planets, are tidally disrupted. We show that these disruptions are rare in discs around high metallicity stars but release more debris per disruption than their low [M/H] analogs. This predicts no simple relation between debris disc presence and host star's [M/H], as observed. A detected gas giant planet implies in TD that its predecessor fragment was not disputed, potentially explaining why DDs are less likely to be found around stars with gas giants. Less massive planets should correlate with DD presence, and sub-Saturn planets (M_{p} \sim 50 \M_{\oplus}) should correlate with DD presence stronger than sub-Neptunes (M_{p} \leq 15 \M_{\oplus}). These predicted planet-DD correlations will be diluted and weakened in observations by planetary systems' long term evolution and multi-fragment effects neglected here. Finally, although presently difficult to observe, DDs around M dwarf stars should be more prevalent than around Solar type stars.Comment: 12 pages, 11 figures, to be published in MNRA
    corecore