144 research outputs found

    The Health State of the Cryosphere

    Get PDF
    The term cryosphere is used to refer to all portions of the Earth surface where water appears in solid form. This includes the snow cover; sea, lake and river ice; glaciers, ice caps and ice sheets; and permafrost. The aim of this contribution is to present the current state of the cryosphere. Emphasis will be given to sea ice and continental ice masses (glaciers, ice caps and ice sheets), and the contribution of the losses from the latter to sea level rise (SLR)

    Internal Structure of Ariebreen, Spitsbergen, from radio-echo sounding data

    Get PDF
    Ariebreen (77º 01' N, 15º 29' E) is a small valley glacier (ca. 0.36 km2 in August 2007) located at Hornsund, Spitsbergen, Svalbard, ca. 2.5 km to the west of Hornsund Polish Polar Station. Ariebreen, like many other Svalbard glaciers, has experienced a significant recession at least since the 1930s, and most likely since the end of Little Ice Age (LIA) in the early part of the 20th century. Moreover, the thinning rate of western Svalbard glaciers has shown an acceleration during the most recent decades. Ariebreen follows this general retreat pattern, as is shown in another contribution to this workshop (Petlicki et al., 2008). Most investigated glaciers in Hornsund area, in the neighbourhood of Ariebreen, are known to be polythermal (e.g. Hansbreen and Werenskioldbreen, Pälli et al., 2003). It has been suggested (Macheret et al., 1992) that the thinning of polythermal glaciers may result in a switch to cold thermal structure under appropriate conditions. The strong thinning experienced by Ariebreen during the recent decades makes it an ideal candidate to undergo such change. The main aims of this contribution are to understand the internal structure of Ariebreen, in particular, its hydrothermal regime, and to determine whether the glacier is undergoing or has already experienced a transition from polythermal to cold structure. The main tool to accomplish this will be the analysis of radio-echo sounding data

    A compact lightweight multipurpose ground-penetrating radar for glaciological applications

    Full text link
    We describe a compact lightweight impulse radar for radio-echo sounding of subsurface structures designed specifically for glaciological applications. The radar operates at frequencies between 10 and 75 MHz. Its main advantages are that it has a high signal-to-noise ratio and a corresponding wide dynamic range of 132 dB due mainly to its ability to perform real-time stacking (up to 4096 traces) as well as to the high transmitted power (peak voltage 2800 V). The maximum recording time window, 40 ?s at 100 MHz sampling frequency, results in possible radar returns from as deep as 3300 m. It is a versatile radar, suitable for different geophysical measurements (common-offset profiling, common midpoint, transillumination, etc.) and for different profiling set-ups, such as a snowmobile and sledge convoy or carried in a backpack and operated by a single person. Its low power consumption (6.6 W for the transmitter and 7.5 W for the receiver) allows the system to operate under battery power for mayor que7 hours with a total weight of menor que9 kg for all equipment, antennas and batteries

    Ice volume changes of Ariebreen, Spitsbergen, during 1936-1990-2007

    Get PDF
    Ariebreen (77º 01' N, 15º 29' E) is a small valley glacier (ca. 0.36 km2 in August 2007) located at Hornsund, Spitsbergen, Svalbard, ca. 2.5 km to the west of Hornsund Polish Polar Station. Many Svalbard glaciers have experienced a significant recession at least since the 1930s, and most likely since the end of Little Ice Age in the early 20th century (Werner, 1993). It has manifested as thinning and retreating of ice fronts, though a simultaneous thickening at the uppermost elevations in many locations has been reported (Bamber et al., 2004; Nuth et al., 2007). Moreover, the thinning rate of western Svalbard glaciers has shown an acceleration during the most recent decades (Kohler et al., 2007). The main aims of this contribution are to determine whether Ariebreen follows such retreat pattern and to quantify the retreat it has experienced, in terms of area, thickness and volume changes, to estimate the average mass balance equivalent to the ice volume change during the period under investigation, and to estimate the volume of ice presently stored in Ariebreen. The main tools to accomplish this will be the analysis of digital terrain models (DTM) of the glacier surface corresponding to different dates, and the radio-echo sounding of the ice body to determine the present ice volume. The latter is described in a separate contribution to this workshop (Navarro et al., 2008)

    Sensitivity of a distributed temperature-radiation index melt model based on AWS observations and surface energy balance fluxes, Hurd Peninsula glaciers, Livingston Island, Antarctica

    Get PDF
    We use an automatic weather station and surface mass balance dataset spanning four melt seasons collected on Hurd Peninsula Glaciers, South Shetland Islands, to investigate the point surface energy balance, to determine the absolute and relative contribution of the various energy fluxes acting on the glacier surface and to estimate the sensitivity of melt to ambient temperature changes. Long-wave incoming radiation is the main energy source for melt, while short-wave radiation is the most important flux controlling the variation of both seasonal and daily mean surface energy balance. Short-wave and long-wave radiation fluxes do, in general, balance each other, resulting in a high correspondence between daily mean net radiation flux and available melt energy flux. We calibrate a distributed melt model driven by air temperature and an expression for the incoming short-wave radiation. The model is calibrated with the data from one of the melt seasons and validated with the data of the three remaining seasons. The model results deviate at most 140 mm w.e. from the corresponding observations using the glaciological method. The model is very sensitive to changes in ambient temperature: a 0.5 ◦ C increase results in 56 % higher melt rates

    Surface velocity and ice discharge of the ice cap on King George Island, Antarctica

    Get PDF
    Glaciers on King George Island, Antarctica, have shown retreat and surface lowering in recent decades, concurrent with increasing air temperatures. A large portion of the glacier perimeter is ocean-terminating, suggesting possible large mass losses due to calving and submarine melting. Here we estimate the ice discharge into the ocean for the King George Island ice cap. L-band synthetic aperture radar images covering the time-span January 2008 to January 2011 over King George Island are processed using an intensity-tracking algorithm to obtain surface velocity measurements. Pixel offsets from 40 pairs of radar images are analysed and inverted to estimate a weighted average surface velocity field. Ice thicknesses are derived from simple principles of ice flow mechanics using the computed surface velocity fields and in situ thickness data. The maximum ice surface speeds reach mayor que 225 m/yr, and the total ice discharge for the analysed flux gates of King George Island is estimated to be 0.720+/-0.428 Gt/yr, corresponding to a specific mass loss of 0.64+/-0.38 m w.e./yr over the area of the entire ice cap (1127 km2)

    Preliminary results of the relation between ice viscosity and water content using an inverse method

    Get PDF
    One of the outstanding problems of the modelling of temperate ice dynamics is the limited knowledge on the rheology of temperate ice and, in particular, on how the rate factor depends on the liquid water content. Though it is well known that the rate factor depends strongly on the water content, in practice the only available experimentally-based relationship is that by Duval (1977), which is only valid for water contents up to 1%. However, actual water contents found in temperate and polythermal glaciers are sometimes substantially larger

    Radioglaciological studies on Hurd Peninsula glaciers, Livingston Island, Antarctica

    Get PDF
    We present the results of several radio-echo sounding surveys carried out on Johnsons and Hurd Glaciers, Livingston Island, Antarctica, between the 1999/2000 and 2004/05 austral summer campaigns, which included both radar profiling and common-midpoint measurements with low (20- 25 MHz)- and high (200MHz)-frequency radars. The latter have allowed us to estimate the radio-wave velocity in ice and firn and the corresponding water contents in temperate ice, which vary between 0 and 1.6% depending on the zone. Maximum ice thickness is ~200 m, with a mean value of 93.6 ± 2.5 m. Total ice volume is 0.968 ± 0.026 km3, for an area of 10.34 ± 0.03 km2. The subglacial relief of Johnsons Glacier is quite smooth, while that of Hurd Glacier shows numerous overdeepenings and peaks. The radar records suggest that Hurd Glacier has a polythermal structure, contrary to the usual assumption that glaciers in Livingston Island are temperate. This is also supported by other dynamical and geomorphological evidence

    Modelling experiments of the variations of the calving front position of Hansbreen, Svalbard

    Get PDF
    Hansbreen is a tidewater glacier in Svalbard, with grounded tongue, about 16 km in length and ca. 2.5 km in width at its tongue. The calving front position has shown, over the recent decades, a general retreating trend, often rather smooth but with some occasional abrupt changes. We apply a full-Stokes model of glacier dynamics, incorporating a crevasse-depth calving model, with the aim of reproducing the glacier front positions observed since 1936 and analyzing the sensitivity of the model to environmental parameters

    Finite volume modelling of an icefield with subglacial lake

    Get PDF
    Momentum, mass and energy balance laws provide the tools for the study of the evolution of an icefield covering a subglacial lake. The ice is described as a non-Newtonian fluid with a power-law constitutive relationship with temperature- and stress-dependent viscosity (Glen?s law) [1]. The phase transition mechanisms at the air/ice and ice/water interfaces yield moving boundary formulations, and lake hydrodynamics requires equation reduction for treating the turbulence
    corecore