159 research outputs found

    Higher-Dimensional Twistor Transforms using Pure Spinors

    Full text link
    Hughston has shown that projective pure spinors can be used to construct massless solutions in higher dimensions, generalizing the four-dimensional twistor transform of Penrose. In any even (Euclidean) dimension d=2n, projective pure spinors parameterize the coset space SO(2n)/U(n), which is the space of all complex structures on R^{2n}. For d=4 and d=6, these spaces are CP^1 and CP^3, and the appropriate twistor transforms can easily be constructed. In this paper, we show how to construct the twistor transform for d>6 when the pure spinor satisfies nonlinear constraints, and present explicit formulas for solutions of the massless field equations.Comment: 17 pages harvmac tex. Modified title, abstract, introduction and references to acknowledge earlier papers by Hughston and other

    Exclusive 16O(γ,π-p) reaction in the Δ resonance region

    Get PDF
    We report the first exclusive (γ,π-p) measurements on a complex nucleus. The 16O(γ,π-p) reaction was measured at pion laboratory angles of 64° and 120°. Coincident protons were detected over the quasifree angular correlation range using a vertical array of seven plastic scintillator detectors spanning ±33° about the scattering plane. The cross sections are compared to factorized distorted-wave impulse approximation calculations; these provide a good description of the backward angle data, but are in serious disagreement with the forward angle data

    Towards a formalism for mapping the spacetimes of massive compact objects: Bumpy black holes and their orbits

    Full text link
    Observations have established that extremely compact, massive objects are common in the universe. It is generally accepted that these objects are black holes. As observations improve, it becomes possible to test this hypothesis in ever greater detail. In particular, it is or will be possible to measure the properties of orbits deep in the strong field of a black hole candidate (using x-ray timing or with gravitational-waves) and to test whether they have the characteristics of black hole orbits in general relativity. Such measurements can be used to map the spacetime of a massive compact object, testing whether the object's multipoles satisfy the strict constraints of the black hole hypothesis. Such a test requires that we compare against objects with the ``wrong'' multipole structure. In this paper, we present tools for constructing bumpy black holes: objects that are almost black holes, but that have some multipoles with the wrong value. The spacetimes which we present are good deep into the strong field of the object -- we do not use a large r expansion, except to make contact with weak field intuition. Also, our spacetimes reduce to the black hole spacetimes of general relativity when the ``bumpiness'' is set to zero. We propose bumpy black holes as the foundation for a null experiment: if black hole candidates are the black holes of general relativity, their bumpiness should be zero. By comparing orbits in a bumpy spacetime with those of an astrophysical source, observations should be able to test this hypothesis, stringently testing whether they are the black holes of general relativity. (Abridged)Comment: 16 pages + 2 appendices + 3 figures. Submitted to PR

    Generation of Large-Scale Vorticity in a Homogeneous Turbulence with a Mean Velocity Shear

    Full text link
    An effect of a mean velocity shear on a turbulence and on the effective force which is determined by the gradient of Reynolds stresses is studied. Generation of a mean vorticity in a homogeneous incompressible turbulent flow with an imposed mean velocity shear due to an excitation of a large-scale instability is found. The instability is caused by a combined effect of the large-scale shear motions (''skew-induced" deflection of equilibrium mean vorticity) and ''Reynolds stress-induced" generation of perturbations of mean vorticity. Spatial characteristics, such as the minimum size of the growing perturbations and the size of perturbations with the maximum growth rate, are determined. This instability and the dynamics of the mean vorticity are associated with the Prandtl's turbulent secondary flows. This instability is similar to the mean-field magnetic dynamo instability. Astrophysical applications of the obtained results are discussed.Comment: 8 pages, 3 figures, REVTEX4, submitted to Phys. Rev.

    Workplace productivity and office type: an evaluation of office occupier differences based on age and gender

    Get PDF
    Purpose Open plan office environments are considered to offer workplace productivity benefits because of the opportunities that they create for interaction and knowledge exchange, but more recent research has highlighted noise, distraction and loss of privacy as significant productivity penalties with this office layout. This study aims to investigate if the purported productivity benefits of open plan outweigh the potential productivity penalties. Design/methodology/approach Previous research suggests that office environments are experienced differently according to the gender and age of the occupier across both open-plan and enclosed configurations. Empirical research undertaken with office occupiers in the Middle East (N=220) led to evaluations to establish the impact different offices had on perceived productivity. Factor analysis was used to establish five underlying components of office productivity. The five factors are subsequently used as the basis for comparison between office occupiers based on age, gender and office type. Findings This research shows that benefits and penalties to workplace productivity are experienced equally across open-plan and enclosed office environments. The greatest impact on perceived workplace productivity however was availability of a variety of physical layouts, control over interaction and the 'downtime' offered by social interaction points. Male occupiers and those from younger generations were also found to consider the office environment to have more of a negative impact on their perceived workplace productivity compared to female and older occupiers. Originality/value The originality of this paper is that it develops the concept of profiling office occupiers with the aim of better matching office provision. This paper aims to establish different occupier profiles based on age, gender and office type. Data analysis techniques such as factor analysis and t-test analysis identify the need for different spaces so that occupiers can choose the most appropriate space to best undertake a particular work task. In addition, it emphasises the value that occupiers place on ‘downtime’ leading to the need for appropriate social space

    Electromotive Force and Large-Scale Magnetic Dynamo in a Turbulent Flow with a Mean Shear

    Get PDF
    An effect of sheared large-scale motions on a mean electromotive force in a nonrotating turbulent flow of a conducting fluid is studied. It is demonstrated that in a homogeneous divergence-free turbulent flow the alpha-effect does not exist, however a mean magnetic field can be generated even in a nonrotating turbulence with an imposed mean velocity shear due to a new ''shear-current" effect. A contribution to the electromotive force related with the symmetric parts of the gradient tensor of the mean magnetic field (the kappa-effect) is found in a nonrotating turbulent flows with a mean shear. The kappa-effect and turbulent magnetic diffusion reduce the growth rate of the mean magnetic field. It is shown that a mean magnetic field can be generated when the exponent of the energy spectrum of the background turbulence (without the mean velocity shear) is less than 2. The ''shear-current" effect was studied using two different methods: the Orszag third-order closure procedure and the stochastic calculus. Astrophysical applications of the obtained results are discussed.Comment: 12 pages, REVTEX4, submitted to Phys. Rev.

    Formation of Large-Scale Semi-Organized Structures in Turbulent Convection

    Get PDF
    A new mean-field theory of turbulent convection is developed. This theory predicts the convective wind instability in a shear-free turbulent convection which causes formation of large-scale semi-organized fluid motions in the form of cells or rolls. Spatial characteristics of these motions, such as the minimum size of the growing perturbations and the size of perturbations with the maximum growth rate, are determined. This study predicts also the existence of the convective shear instability in a sheared turbulent convection which results in generation of convective shear waves with a nonzero hydrodynamic helicity. Increase of shear promotes excitation of the convective shear instability. Applications of the obtained results to the atmospheric turbulent convection and the laboratory experiments on turbulent convection are discussed. This theory can be applied also for the describing a mesogranular turbulent convection in astrophysics.Comment: 16 pages, 10 figures, REVTEX4, PHYSICAL REVIEW E, v. 67, in press (2003
    corecore