13 research outputs found

    Polar caps of Mars: Snow depth data and Viking pressure curves

    No full text

    Correlation of the asymmetrical retreat of the south polar cap and the polar layered terrain on Mars

    No full text

    Effects of Interfacial Interactions on Electrocatalytic Activity of Cytochrome c Oxidase in Biomimetic Lipid Membranes on Gold Electrodes

    Get PDF
    Effects of interfacial interactions on the electrocatalytic activity of protein-tethered bilayer lipid membranes (ptBLMs) containing cytochrome c oxidase (CcO) for the oxygen reduction reaction are studied by using protein film electrochemistry and surface-enhanced infrared absorption (SEIRA) spectroscopy. Mammalian CcO was immobilized on a gold electrode via self-assembled monolayers (SAMs) of mixed alkanethiols. The protein orientation on the electrode is controlled by SAM–CcO interactions and is critical to the cytochrome c (cyt c) binding. The CcO–phospholipid and CcO–cyt c interactions modulate the electrocatalytic activity of CcO, and more densely packed ptBLMs show higher electrocatalytic activity. Our study indicates that spectroscopic and electrochemical studies of ptBLMs can provide insights into the effects of relatively weak protein–protein and protein–lipid interactions on the enzymatic activity of transmembrane enzymes

    TLR9 mediates cellular protection by modulating energy metabolism in cardiomyocytes and neurons

    No full text
    Toll-like receptors (TLRs) are the central players in innate immunity. In particular, TLR9 initiates inflammatory response by recognizing DNA, imported by infection or released from tissue damage. Inflammation is, however, harmful to terminally differentiated organs, such as the heart and brain, with poor regenerative capacity, yet the role of TLR9 in such nonimmune cells, including cardiomyocytes and neurons, is undefined. Here we uncover an unexpected role of TLR9 in energy metabolism and cellular protection in cardiomyocytes and neurons. TLR9 stimulation reduced energy substrates and increased the AMP/ATP ratio, subsequently activating AMP-activated kinase (AMPK), leading to increased stress tolerance against hypoxia in cardiomyocytes without inducing the canonical inflammatory response. Analysis of the expression profiles between cardiomyocytes and macrophages identified that unc93 homolog B1 (C. elegans) was a pivotal switch for the distinct TLR9 responses by regulating subcellular localization of TLR9. Furthermore, this alternative TLR9 signaling was also found to operate in differentiated neuronal cells. These data propose an intriguing model that the same ligand–receptor can concomitantly increase the stress tolerance in cardiomyocytes and neurons, whereas immune cells induce inflammation upon tissue injury

    2003 Mars report from cooperative observation networks

    No full text
    corecore