76 research outputs found

    Lack of Inertia Force of Late Systolic Aortic Flow Is a Cause of Left Ventricular Isolated Diastolic Dysfunction in Patients With Coronary Artery Disease

    Get PDF
    ObjectivesWe investigated whether a lack of inertia force of late systolic aortic flow and/or apical asynergy provoke early diastolic dysfunction in patients with coronary artery disease (CAD).BackgroundLeft ventricular (LV) isolated diastolic dysfunction is a well-recognized cause of heart failure.MethodsWe evaluated LV apical wall motion and obtained left ventricular ejection fraction (LVEF) by left ventriculography in 101 patients who underwent cardiac catheterization to assess CAD. We also computed the LV relaxation time constant (Tp) and the inertia force of late systolic aortic flow from the LV pressure (P)–first derivative of left ventricular pressure (dP/dt) relation. Using color Doppler echocardiography, we measured the propagation velocity of LV early diastolic filling flow (Vp). Patients with LVEF ≥50% (preserved systolic function [PSF], n = 83) were divided into 2 subgroups: patients with inertia force (n = 53) and without inertia force (n = 30). No patient with systolic dysfunction (SDF) (LVEF <50%) had inertia force (n = 18).ResultsThe Tp was significantly longer in patients with SDF (85.7 ± 21.0 ms) and with PSF without inertia force (81.1 ± 23.6 ms) than in those with PSF with inertia force (66.3 ± 12.8 ms) (p< 0.001). The Vp was significantly less in the former 2 groups than in the last group. In patients with PSF, LV apical wall motion abnormality was less frequently observed in those with inertia force than in those without (p < 0.0001).ConclusionsAn absence of inertia force in patients with PSF is one of the causes of isolated diastolic dysfunction in patients with CAD. Normal LV apical wall motion is substantial enough to give inertia to late systolic aortic flow

    Biocompatibility and bone tissue compatibility of alumina ceramics reinforced with carbon nanotubes

    Get PDF
    信州大学博士(医学)・学位論文・平成23年3月31日授与(甲第906号)・荻原伸英The addition of carbon nanotubes (CNTs) remarkably improves the mechanical characteristics of base materials. CNT/alumina ceramic composites are expected to be highly functional biomaterials useful in a variety of medical fields. Biocompatibility and bone tissue compatibility were studied for the application of CNT/alumina composites as biomaterials. Methods & results: Inflammation reactions in response to the composite were as mild as those of alumina ceramic alone in a subcutaneous implantation study. In bone implantation testing, the composite showed good bone tissue compatibility and connected directly to new bone. An in vitro cell attachment test was performed for osteoblasts, chondrocytes, fibroblasts and smooth muscle cells, and CNT/alumina composite showed cell attachment similar to that of alumina ceramic. Discussion & conclusion: Owing to proven good biocompatibility and bone tissue compatibility, the application of CNT/alumina composites as biomaterials that contact bone, such as prostheses in arthroplasty and devices for bone repair, are expected.ArticleNANOMEDICINE. 7(7):981-993 (2012)journal articl

    Biocompatibility and bone tissue compatibility of alumina ceramics reinforced with carbon nanotubes

    Get PDF
    信州大学博士(医学)・学位論文・平成23年3月31日授与(甲第906号)・荻原伸英The addition of carbon nanotubes (CNTs) remarkably improves the mechanical characteristics of base materials. CNT/alumina ceramic composites are expected to be highly functional biomaterials useful in a variety of medical fields. Biocompatibility and bone tissue compatibility were studied for the application of CNT/alumina composites as biomaterials. Methods & results: Inflammation reactions in response to the composite were as mild as those of alumina ceramic alone in a subcutaneous implantation study. In bone implantation testing, the composite showed good bone tissue compatibility and connected directly to new bone. An in vitro cell attachment test was performed for osteoblasts, chondrocytes, fibroblasts and smooth muscle cells, and CNT/alumina composite showed cell attachment similar to that of alumina ceramic. Discussion & conclusion: Owing to proven good biocompatibility and bone tissue compatibility, the application of CNT/alumina composites as biomaterials that contact bone, such as prostheses in arthroplasty and devices for bone repair, are expected.ArticleNANOMEDICINE. 7(7):981-993 (2012)journal articl

    In Vivo Tracking of Transplanted Mononuclear Cells Using Manganese-Enhanced Magnetic Resonance Imaging (MEMRI)

    Get PDF
    BACKGROUND: Transplantation of mononuclear cells (MNCs) has previously been tested as a method to induce therapeutic angiogenesis to treat limb ischemia in clinical trials. Non-invasive high resolution imaging is required to track the cells and evaluate clinical relevance after cell transplantation. The hypothesis that MRI can provide in vivo detection and long-term observation of MNCs labeled with manganese contrast-agent was investigated in ischemic rat legs. METHODS AND FINDINGS: The Mn-labeled MNCs were evaluated using 7-tesla high-field magnetic resonance imaging (MRI). Intramuscular transplanted Mn-labeled MNCs were visualized with MRI for at least 7 and up to 21 days after transplantation in the ischemic leg. The distribution of Mn-labeled MNCs was similar to that of ¹¹¹In-labeled MNCs measured with single-photon emission computed tomography (SPECT) and DiI-dyed MNCs with fluorescence microscopy. In addition, at 1-2 days after transplantation the volume of the site injected with intact Mn-labeled MNCs was significantly larger than that injected with dead MNCs, although the dead Mn-labeled MNCs were also found for approximately 2 weeks in the ischemic legs. The area covered by CD31-positive cells (as a marker of capillary endothelial cells) in the intact Mn-MNCs implanted site at 43 days was significantly larger than that at a site implanted with dead Mn-MNCs. CONCLUSIONS: The present Mn-enhanced MRI method enabled visualization of the transplanted area with a 150-175 µm in-plane spatial resolution and allowed the migration of labeled-MNCs to be observed for long periods in the same subject. After further optimization, MRI-based Mn-enhanced cell-tracking could be a useful technique for evaluation of cell therapy both in research and clinical applications

    Large-scale animal model study uncovers altered brain pH and lactate levels as a transdiagnostic endophenotype of neuropsychiatric disorders involving cognitive impairment

    Get PDF

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
    corecore