13 research outputs found

    Nanomaterials for Cardiac Tissue Engineering

    No full text
    End stage heart failure is a major cause of death in the US. At present, organ transplant and left-ventricular assist devices remain the only viable treatments for these patients. Cardiac tissue engineering presents the possibility of a new option. Nanomaterials such as gold nanorods (AuNRs) and carbon nanotubes (CNTs) present unique properties that are beneficial for cardiac tissue engineering approaches. In particular, these nanomaterials can modulate electrical conductivity, hardness, and roughness of bulk materials to improve tissue functionality. Moreover, they can deliver bioactive cargo to affect cell phenotypes. This review covers recent advances in the use of nanomaterials for cardiac tissue engineering

    N- and C-Terminal Cooperation in Rotavirus Enterotoxin: Novel Mechanism of Modulation of the Properties of a Multifunctional Protein by a Structurally and Functionally Overlapping Conformational Domain

    No full text
    Rotavirus NSP4 is a multifunctional endoplasmic reticulum (ER)-resident nonstructural protein with the N terminus anchored in the ER and about 131 amino acids (aa) of the C-terminal tail (CT) oriented in the cytoplasm. Previous studies showed a peptide spanning aa 114 to 135 to induce diarrhea in newborn mouse pups with the 50% diarrheal dose approximately 100-fold higher than that for the full-length protein, suggesting a role for other regions in the protein in potentiating its diarrhea-inducing ability. In this report, employing a large number of methods and deletion and amino acid substitution mutants, we provide evidence for the cooperation between the extreme C terminus and a putative amphipathic α-helix located between aa 73 and 85 (AAH(73-85)) at the N terminus of ΔN72, a mutant that lacked the N-terminal 72 aa of nonstructural protein 4 (NSP4) from Hg18 and SA11. Cooperation between the two termini appears to generate a unique conformational state, specifically recognized by thioflavin T, that promoted efficient multimerization of the oligomer into high-molecular-mass soluble complexes and dramatically enhanced resistance against trypsin digestion, enterotoxin activity of the diarrhea-inducing region (DIR), and double-layered particle-binding activity of the protein. Mutations in either the C terminus, AAH(73-85), or the DIR resulted in severely compromised biological functions, suggesting that the properties of NSP4 are subject to modulation by a single and/or overlapping highly sensitive conformational domain that appears to encompass the entire CT. Our results provide for the first time, in the absence of a three-dimensional structure, a unique conformation-dependent mechanism for understanding the NSP4-mediated pleiotropic properties including virus virulence and morphogenesis

    The flexible C terminus of the rotavirus non-structural protein NSP4 is an important determinant of its biological properties

    No full text
    The rotavirus non-structural protein NSP4 functions as the viral enterotoxin and intracellular receptor for the double-layered particles (DLP). The full-length protein cannot be expressed and/or purified to homogeneity from bacterial or insect cells. However, a bacterially expressed and purified mutant lacking the N-terminal 72 aa(\triangle N72) was recently obtained from strains Hg18 and SA11 exhibiting approximately 17–20-, 150–200- and 13166–15800-fold lower DD50DD_{50} (50% diarrhoea-inducing dose) values in suckling mice compared with that reported for the partially pure, full-length protein, a C-terminal M175I mutant and a synthetic peptide comprising aa 114– 135, respectively, suggesting the requirement for a unique conformation for optimal functions of the purified protein. The stretch of approximately 40 aa from the C terminus of the cytoplasmic tail of the endoplasmic reticulum-anchored NSP4 is highly flexible and exhibits high sequence variation compared with the other regions, the significance of which in diarrhoea induction remain unresolved. Here, it was shown that every amino acid substitution or deletion in the flexible C terminus resulted in altered conformation, multimerization, trypsin resistance and thioflavin T (ThT)binding, and affected DLP binding and the diarrhoea-inducing ability of the highly diarrhoeagenic SA11 and Hg18 \triangleN72 in suckling mice. These studies further revealed that high ThT fluorescence correlated with efficient diarrhoea induction, suggesting the importance of an optimal ThT-recognizable conformation in diarrhoea induction by purified NSP4. These results based on biological properties provide a possible conformational basis for understanding the influence of primary sequence variations on diarrhoea induction in newborn mice by purified NSP4s that cannot be explained by extensive sequence analyses

    Liposomal Spherical Nucleic Acids

    No full text
    A novel class of metal-free spherical nucleic acid nanostructures was synthesized from readily available starting components. These particles consist of 30 nm liposomal cores, composed of an FDA-approved 1,2-dioleoyl-<i>sn</i>-glycero-3-phospho­choline (DOPC) lipid monomer. The surface of the liposomes was functionalized with DNA strands modified with a toco­pherol tail that intercalates into the phospho­lipid layer of the liposomal core via hydrophobic interactions. The spherical nucleic acid architecture not only stabilizes these constructs but also facilitates cellular internalization and gene regulation in SKOV-3 cells

    The sequence-specific cellular uptake of spherical nucleic acid nanoparticle conjugates

    No full text
    The sequence-dependent cellular uptake of spherical nucleic acid nanoparticle conjugates (SNAs) is investigated. This process occurs by interaction with class A scavenger receptors (SR-A) and caveolae-mediated endocytosis. It is known that linear poly(guanine) (poly G) is a natural ligand for SR-A, and it has been proposed that interaction of poly G with SR-A is dependent on the formation of G-quadruplexes. Since G-rich oligonucleotides are known to interact strongly with SR-A, it is hypothesized that SNAs with higher G contents would be able to enter cells in larger amounts than SNAs composed of other nucleotides, and as such, cellular internalization of SNAs is measured as a function of constituent oligonucleotide sequence. Indeed, SNAs with enriched G content show the highest cellular uptake. Using this hypothesis, a small molecule (camptothecin) is chemically conjugated with SNAs to create drug-SNA conjugates and it is observed that poly G SNAs deliver the most camptothecin to cells and have the highest cytotoxicity in cancer cells. Our data elucidate important design considerations for enhancing the intracellular delivery of spherical nucleic acids

    Cross-Linked Micellar Spherical Nucleic Acids from Thermoresponsive Templates

    No full text
    A one-pot synthesis of micellar spherical nucleic acid (SNA) nanostructures using Pluronic F127 as a thermoresponsive template is reported. These novel constructs are synthesized in a chemically straightforward process that involves intercalation of the lipid tails of DNA amphiphiles (CpG motifs for TLR-9 stimulation) into the hydrophobic regions of Pluronic F127 micelles, followed by chemical cross-linking and subsequent removal of non-cross-linked structures. The dense nucleic acid shell of the resulting cross-linked micellar SNA enhances their stability in physiological media and facilitates their rapid cellular internalization, making them effective TLR-9 immunomodulatory agents. These constructs underscore the potential of SNAs in regulating immune response and address the relative lack of stability of noncovalent constructs

    Drug-Loaded Polymeric Spherical Nucleic Acids: Enhancing Colloidal Stability and Cellular Uptake of Polymeric Nanoparticles through DNA Surface-Functionalization

    Get PDF
    Small-sized (∼65 nm) doxorubicin (Dox)-loaded polymeric nanoparticles (PNPs) were modified with oligonucleotides to form colloidally stable Dox-loaded polymeric spherical nucleic acid (Dox-PSNA) nanostructures in biological media. The nucleic acid shell facilitates the cellular uptake of Dox-PSNA, which results in <i>in vitro</i> cytotoxicity against SKOV3 cancer cells

    Novel Pentameric Structure of the Diarrhea-Inducing Region of the Rotavirus Enterotoxigenic Protein NSP4

    No full text
    A novel pentameric structure which differs from the previously reported tetrameric form of the diarrhea-inducing region of the rotavirus enterotoxin NSP4 is reported here. A significant feature of this pentameric form is the absence of the calcium ion located in the core region of the tetrameric structures. The lysis of cells, the crystallization of the region spanning residues 95 to 146 of NSP4 (NSP4(95-146)) of strain ST3 (ST3: NSP4(95-146)) at acidic pH, and comparative studies of the recombinant purified peptide under different conditions by size-exclusion chromatography (SEC) and of the crystal structures suggested pH-, Ca(2+)-, and protein concentration-dependent oligomeric transitions in the peptide. Since the NSP4(95-146) mutant lacks the N-terminal amphipathic domain (AD) and most of the C-terminal flexible region (FR), to demonstrate that the pentameric transition is not a consequence of the lack of the N- and C-terminal regions, glutaraldehyde cross-linking of the Delta N72 and Delta N94 mutant proteins, which contain or lack the AD, respectively, but possess the complete C-terminal FR, was carried out. The results indicate the presence of pentamers in preparations of these longer mutants. Detailed SEC analyses of Delta N94 prepared under different conditions, however, revealed protein concentration-dependent but metal ion-and pH-independent pentamer accumulation at high concentrations which dissociated into tetramers and lower oligomers at low protein concentrations. While calcium appeared to stabilize the tetramer, magnesium in particular stabilized the dimer. Delta N72 existed primarily in the multimeric form under all conditions. These findings of a calcium-free NSP4 pentamer and its concentration-dependent and largely calcium-independent oligomeric transitions open up a new dimension in an understanding of the structural basis of its multitude of functions
    corecore