50 research outputs found
Towards Endometriosis Diagnosis by Gadofosveset-Trisodium Enhanced Magnetic Resonance Imaging
Endometriosis is defined as the presence of endometrial tissue outside the uterus. It affects 10–15% of women during reproductive age and has a big personal and social impact due to chronic pelvic pain, subfertility, loss of work-hours and medical costs. Such conditions are exacerbated by the fact that the correct diagnosis is made as late as 8–11 years after symptom presentation. This is due to the lack of a reliable non-invasive diagnostic test and the fact that the reference diagnostic standard is laparoscopy (invasive, expensive and not without risks). High-molecular weight gadofosveset-trisodium is used as contrast agent in Magnetic Resonance Imaging (MRI). Since it extravasates from hyperpermeable vessels more easily than from mature blood vessels, this contrast agent detects angiogenesis efficiently. Endometriosis has high angiogenic activity. Therefore, we have tested the possibility to detect endometriosis non-invasively using Dynamic Contrast-Enhanced MRI (DCE-MRI) and gadofosveset-trisodium as a contrast agent in a mouse model. Endometriotic lesions were surgically induced in nine mice by autologous transplantation. Three weeks after lesion induction, mice were scanned by DCE-MRI. Dynamic image analysis showed that the rates of uptake (inwash), persistence and outwash of the contrast agent were different between endometriosis and control tissues (large blood vessels and back muscle). Due to the extensive angiogenesis in induced lesions, the contrast agent persisted longer in endometriotic than control tissues, thus enhancing the MRI signal intensity. DCE-MRI was repeated five weeks after lesion induction, and contrast enhancement was similar to that observed three weeks after endometriosis induction. The endothelial-cell marker CD31 and the pericyte marker α-smooth-muscle-actin (mature vessels) were detected with immunohistochemistry and confirmed that endometriotic lesions had significantly higher prevalence of new vessels (CD31 only positive) than the uterus and control tissues. The diagnostic value of gadofosveset-trisodium to detect endometriosis should be tested in human settings
Ectopic endometrium in human foetuses is a common event and sustains the theory of müllerianosis in the pathogenesis of endometriosis, a disease that predisposes to cancer
<p>Abstract</p> <p>Background</p> <p>Endometriosis is a gynecological disease defined by the histological presence of endometrial glands and stroma outside the uterine cavity. Women with endometriosis have an increased risk of different types of malignancies, especially ovarian cancer and non-Hodgkin's lymphoma. Though there are several theories, researchers remain unsure as to the definitive cause of endometriosis. Our objective was to test the validity of the theory of müllerianosis for endometriosis, that is the misplacing of primitive endometrial tissue along the migratory pathway of foetal organogenesis</p> <p>Methods</p> <p>We have collected at autopsy 36 human female foetuses at different gestational age. We have performed a morphological and immunohistochemical study (expression of oestrogen receptor and CA125) on the pelvic organs of the 36 foetuses included en-block and totally analyzed.</p> <p>Results</p> <p>In 4 out of 36 foetuses we found presence of misplaced endometrium in five different ectopic sites: in the recto-vaginal septum, in the proximity of the Douglas pouch, in the mesenchimal tissue close to the posterior wall of the uterus, in the rectal tube at the level of muscularis propria, and in the wall of the uterus. All these sites are common location of endometriosis in women.</p> <p>Conclusion</p> <p>We propose that a cause of endometriosis is the dislocation of primitive endometrial tissue outside the uterine cavity during organogenesis.</p
Mining unexpected patterns using decision trees and interestingness measures: a case study of endometriosis
[[abstract]]Because clinical research is carried out in complex environments, prior domain knowledge, constraints, and expert knowledge can enhance the capabilities and performance of data mining. In this paper we propose an unexpected pattern mining model that uses decision trees to compare recovery rates of two different treatments, and to find patterns that contrast with the prior knowledge of domain users. In the proposed model we define interestingness measures to determine whether the patterns found are interesting to the domain. By applying the concept of domain-driven data mining, we repeatedly utilize decision trees and interestingness measures in a closed-loop, in-depth mining process to find unexpected and interesting patterns. We use retrospective data from transvaginal ultrasound-guided aspirations to show that the proposed model can successfully compare different treatments using a decision tree, which is a new usage of that tool. We believe that unexpected, interesting patterns may provide clinical researchers with different perspectives for future research.[[incitationindex]]SCI[[incitationindex]]EI[[booktype]]紙本[[booktype]]電子
Puerarin Suppresses Invasion and Vascularization of Endometriosis Tissue Stimulated by 17β-Estradiol
BACKGROUND: Puerarin, a phytoestrogen with a weak estrogenic effect, binds to estrogen receptors, thereby competing with 17β-estradiol (E2) and producing an anti-estrogenic effect. This study was to investigate whether puerarin could suppress the invasion and vascularization of E2-stimulated endometriotic tissue. METHODOLOGY/PRINCIPAL FINDINGS: The endometriotic stromal cells (ESCs) were successfully established and their invasive ability under different treatments was assessed through a Transwell Assay. Simultaneously, matrix metallopeptidase 9 (MMP-9) and tissue inhibitor of metalloproteinase 1 (TIMP-1) were detected by western blotting. Vascularization of endometriotic tissues was observed by chicken chorioallantoic membrane (CAM) assay. The staining of MMP-9, intercellular adhesion molecule 1 (ICAM-1), TIMP-1, and vascular endothelial growth factor (VEGF) in grafted endometriotic tissues was examined using immunohistochemistry analysis. The purity of ESCs in isolated cells was >95%, as determined by the fluoroimmunoassay of vimentin. E2 (10(-8) mol/L) promoted the invasiveness of ESCs by increasing MMP-9 accumulation and decreasing TIMP-1 accumulation. Interestingly, puerarin (10(-9) mol/L) significantly reversed these effects (P<0.01). The CAM assay indicated that puerarin (10(-9) mol/L) also inhibited the angiopoiesis of endometriotic tissue stimulated by the E2 (10(-8) mol/L) treatment (P<0.05). Accordingly, immunohistochemistry showed that the accumulation of MMP-9, ICAM-1, and VEGF was reduced whereas that of TIMP-1 increased in the combination treatment group compared with the E2 treatment group. CONCLUSIONS/SIGNIFICANCE: This study demonstrated that puerarin could suppress the tissue invasion by ESCs and the vascularization of ectopic endometrial tissues stimulated by E2, suggesting that puerarin may be a potential drug for the treatment of endometriosis
The Peritoneum Is Both a Source and Target of TGF-β in Women with Endometriosis
Transforming growth factor-β (TGF-β) is believed to play a major role in the aetiology of peritoneal endometriosis. We aimed to determine if the peritoneum is a source of TGF-β and if peritoneal TGF-β expression, reception or target genes are altered in women with endometriosis. Peritoneal fluid, peritoneal bushings and peritoneal biopsies were collected from women with and without endometriosis. TGF-β1, 2 and 3 protein concentrations were measured in the peritoneal fluid. TGF-β1 was measured in mesothelial cell conditioned media. Control peritoneum and peritoneum prone to endometriosis (within Pouch of Douglas) from women without disease (n = 16) and peritoneum distal and adjacent to endometriosis lesions in women with endometriosis (n = 15) and were analysed for TGF-β expression, reception and signalling by immunohistochemistry, qRT-PCR and a TGF-β signalling PCR array. TGF-β1 was increased in the peritoneal fluid of women with endometriosis compared to those without disease (P<0.05) and peritoneal mesothelial cells secrete TGF-β1 in-vitro. In women with endometriosis, peritoneum from sites adjacent to endometriosis lesions expressed higher levels of TGFB1 mRNA when compared to distal sites (P<0.05). The TGF-β-stimulated Smad 2/3 signalling pathway was active in the peritoneum and there were significant increases (P<0.05) in expression of genes associated with tumorigenesis (MAPK8, CDC6), epithelial-mesenchymal transition (NOTCH1), angiogenesis (ID1, ID3) and neurogenesis (CREB1) in the peritoneum of women with endometriosis. In conclusion, the peritoneum, and in particular, the peritoneal mesothelium, is a source of TGF-β1 and this is enhanced around endometriosis lesions. The expression of TGF-β-regulated genes is altered in the peritoneum of women with endometriosis and this may promote an environment favorable to lesion formation