28 research outputs found
Nuclear magnetic resonance spectroscopy. Basic theory and background
El libro está compuesto por 344 páginas.-- El trabajo referido constituye la Introducción.Peer reviewe
Impact of Microplastic Fibers from the Degradation of Nonwoven Synthetic Textiles to the Magdalena River Water Column and River Sediments by the City of Neiva, Huila (Colombia)
Magdalena River surface water and shoreline sediments were sampled for microplastic particles at three locations in the city of Neiva, Colombia: upstream, city center, and downstream of the raw wastewater outflow. The absence of an industrial and manufacturing sector in Neiva provided an opportunity to assess the impact of upstream agricultural practices, as well as municipal activities such as wastewater outflow and laundry washing, on the quantity, polymer composition, and morphology of microplastic particles produced per capita and entering a river system. Microplastic particle concentrations increased with downstream distance, with microfiber concentrations ranging from 0.097 to 0.135 fibers/L in the river water and 25.5 to 102.4 fibers/kg in shoreline sediment. Microplastic fragment concentrations were 0.013–0.028 fragments/L in surface water and 10.4–12.7 fragments/kg of sediment. Raman microscope and scanning electron microscopy identified the relative composition of the polymers comprising the microplastic particles was similar regardless of sampling site or whether the sample was collected from the surface water or shoreline sediments, with polypropylene and polyethylene comprising at least 75% of the total polymers in all samples. Average fiber widths of < 20 µm in all but one sample, along with the lack of acrylic and polyester fibers used predominantly in woven synthetic textiles, indicated that the degradation of nonwoven synthetic textiles is the predominant origin of these microplastic fibers in the Magdalena River
Terpenoids as major precursors of dissolved organic matter in landfill leachates, surface water, and groundwater
13C NMR analyses of hydrophobic dissolved organic matter (DOM) fractions isolated from a landfill leachate contaminated groundwater near Norman, OK; the Colorado River aqueduct near Los Angeles, CA; Anaheim Lake, an infiltration basin for the Santa Ana River in Orange County, CA; and groundwater from the Tomago Sand Beds, near Sydney, Australia, found branched methyl groups and quaternary aliphatic carbon structures that are indicative of terpenoid hydrocarbon precursors. Significant amounts of lignin precursors, commonly postulated to be the major source of DOM, were found only in trace quantities by thermochemolysis/gas chromatography/mass spectrometry of the Norman Landfill and Tomago Sand Bed hydrophobic DOM fractions. Electrospray/tandem mass spectrometry of the Tomago Sand Bed hydrophobic acid DOM found an ion series differing by 14 daltons, which is indicative of aliphatic and aryl-aliphatic polycarboxylic acids. The product obtained from ozonation of the resin acid, abietic acid, gave a similar ion series. Terpenoid precursors of DOM are postulated to be derived from resin acid paper sizing agents in the Norman Landfill, algal and bacterial terpenoids in the Colorado River and Anaheim Lake, and terrestrial plant terpenoids in the Tomago Sand Beds
Cyclohexane Carboxylate and Benzoate Formation from Crotonate in Syntrophus aciditrophicus
The anaerobic, syntrophic bacterium Syntrophus aciditrophicus grown in pure culture produced 1.4 ± 0.24 mol of acetate and 0.16 ± 0.02 mol of cyclohexane carboxylate per mole of crotonate metabolized. [U-(13)C]crotonate was metabolized to [1,2-(13)C]acetate and [1,2,3,4,5,7-(13)C]cyclohexane carboxylate. Cultures grown with unlabeled crotonate and [(13)C]sodium bicarbonate formed [6-(13)C]cyclohexane carboxylate. Trimethylsilyl (TMS) derivatives of cyclohexane carboxylate, cyclohex-1-ene carboxylate, benzoate, pimelate, glutarate, 3-hydroxybutyrate, and acetoacetate were detected as intermediates by comparison of retention times and mass spectral profiles to authentic standards. With [U-(13)C]crotonate, the m/z-15 ion of TMS-derivatized glutarate, 3-hydroxybutyrate, and acetoacetate each increased by +4 mass units, and the m/z-15 ion of TMS-derivatized pimelate, cyclohex-1-ene carboxylate, benzoate, and cyclohexane carboxylate each increased by +6 mass units. With [(13)C]sodium bicarbonate and unlabeled crotonate, the m/z-15 ion of TMS derivatives of glutarate, pimelate, cyclohex-1-ene carboxylate, benzoate, and cyclohexane carboxylate each increased by +1 mass unit, suggesting that carboxylation occurred after the synthesis of a four-carbon intermediate. With [1,2-(13)C]acetate and unlabeled crotonate, the m/z-15 ion of TMS-derivatized 3-hydroxybutyrate, acetoacetate, and glutarate each increased by +0, +2, and +4 mass units, respectively, and the m/z-15 ion of TMS-derivatized pimelate, cyclohex-1-ene carboxylate, benzoate, cyclohexane carboxylate, and 2-hydroxycyclohexane carboxylate each increased by +0, +2, +4, and +6 mass units. The data are consistent with a pathway for cyclohexane carboxylate formation involving the condensation of two-carbon units derived from crotonate degradation with CO(2) addition, rather than the use of the intact four-carbon skeleton of crotonate