70 research outputs found

    A Unified Weight Initialization Paradigm for Tensorial Convolutional Neural Networks

    Full text link
    Tensorial Convolutional Neural Networks (TCNNs) have attracted much research attention for their power in reducing model parameters or enhancing the generalization ability. However, exploration of TCNNs is hindered even from weight initialization methods. To be specific, general initialization methods, such as Xavier or Kaiming initialization, usually fail to generate appropriate weights for TCNNs. Meanwhile, although there are ad-hoc approaches for specific architectures (e.g., Tensor Ring Nets), they are not applicable to TCNNs with other tensor decomposition methods (e.g., CP or Tucker decomposition). To address this problem, we propose a universal weight initialization paradigm, which generalizes Xavier and Kaiming methods and can be widely applicable to arbitrary TCNNs. Specifically, we first present the Reproducing Transformation to convert the backward process in TCNNs to an equivalent convolution process. Then, based on the convolution operators in the forward and backward processes, we build a unified paradigm to control the variance of features and gradients in TCNNs. Thus, we can derive fan-in and fan-out initialization for various TCNNs. We demonstrate that our paradigm can stabilize the training of TCNNs, leading to faster convergence and better results.Comment: Accepted in ICML 202

    Level of IGF1 in follicular fluid associated with IVF pregnancy outcome in the application of growth hormone

    Get PDF
    Objectives: The combination of growth hormone (GH) with gonadotropin was a prevalent method to improve clinical reproduction in adjuvant for assisted reproduction treatment (ART). However, the contradictory results from previous studies failed to confirm the benefits. The present study is focused on the mechanism analysis of GH-IGF1-gonadal axis in ART and the changes of IGF1 in follicular fluid among different types of patients. Material and methods: We recruited 136 patients and divided them into eight groups according to their ages and ovarian reserves. The baseline characteristics of the study population were summarized. The therapeutic outcomes in the study population were observed. In the meantime, concentrations of IGF1 in follicular fluids from different types of patients who underwent GH strategy were measured by Western blot. The functional mechanism of GH-IGF1-gonadal axis in ART was also analyzed. Results: We analyzed the baseline characteristics of the study population, the therapeutic outcome of GH-IGF-1-gonadal axis, as well as the relative protein level of IGF1 and IGFBP1 in follicular fluid from different groups. The chemical pregnancy rate was significantly increased in different degrees for groups with GH co-treatment compared to groups without GH co-treatment. The IGF1 in follicular fluid of patients under 35 years’ old showed an upward trend compared with groups of poor, normal and high ovarian reserves. After GH induction, IGF1 in follicular fluid was significantly increased in patients over 35 years old. Conclusions: The study suggested that the application of GH might be beneficial to the pregnancy outcome in patients. GH application in patients older than 35 years might have a beneficial effect on pregnancy outcome via promoting the expression of IGF1. Our study indicates a different mechanism from GH application among younger and older patient in ART and provides a new clue for individual clinical treatment in infernity patients

    Co-Zeolitic Imidazolate Framework@Cellulose Aerogels from Sugarcane Bagasse for Activating Peroxymonosulfate to Degrade P-Nitrophenol

    Get PDF
    An efficient, green and reusable catalyst for organic pollutant wastewater treatment has been a subject of intense research in recent decades due to the limitation of current technologies. Cellulose based aerogel composites are considered to be an especially promising candidate for next-generation catalytic material. This project was conducted in order to evaluate the behavior and ability of green and reusable sugarcane bagasse aerogels to remove P-Nitrophesnol from waste-water aqueous. Co-Zeolitic imidazolate framework@ sugarcane bagasse aerogels composite catalysts were successfully prepared via simple in situ synthesis. The structure of hybrid aerogels and their efficient catalyst in peroxymonosulfate (PMS) activation for the degradation of p-nitrophenol (PNP) was investigated. As a result, the hybrid aerogels/PMS system removed 98.5% of PNP (10 mg/L) within 60~70 min, while the traditional water treatment technology could not achieve this. In addition, through a free radical capture experiment and electron paramagnetic resonance (EPR), the degradation mechanism of PNP was investigated. Further research found that the hybrid aerogels can effectively activate PMS to produce sulfate (SO∙ −4) and hydroxyl (OH∙ ). Both of them contributed to the degradation of PNP, and SO∙ −4 plays a crucial role in the degradative process. The most important feature of hybrid aerogels can be easily separated from the solution. The obtained results showed that the outer coating structure of cellulose can stabilize Co-ZIF and reduce the dissolution of cobalt ions under complex reaction conditions. Moreover, the prepared hybrid aerogels exhibit excellent reusability and are environmentally friendly with efficient catalytic efficiency. This work provides a new strategy for bagasse applications and material reusability

    The Role of Type 2 Innate Lymphoid Cells in Allergic Diseases

    Get PDF
    Allergic diseases are significant diseases that affect many patients worldwide. In the past few decades, the incidence of allergic diseases has increased significantly due to environmental changes and social development, which has posed a substantial public health burden and even led to premature death. The understanding of the mechanism underlying allergic diseases has been substantially advanced, and the occurrence of allergic diseases and changes in the immune system state are known to be correlated. With the identification and in-depth understanding of innate lymphoid cells, researchers have gradually revealed that type 2 innate lymphoid cells (ILC2s) play important roles in many allergic diseases. However, our current studies of ILC2s are limited, and their status in allergic diseases remains unclear. This article provides an overview of the common phenotypes and activation pathways of ILC2s in different allergic diseases as well as potential research directions to improve the understanding of their roles in different allergic diseases and ultimately find new treatments for these diseases

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Land Use Function Transition and Associated Ecosystem Service Value Effects Based on Production–Living–Ecological Space: A Case Study in the Three Gorges Reservoir Area

    No full text
    The transition of land use function and its effects on ecosystem services is a key issue in eco-environmental protection and is the basis of territorial space governance and optimization. Previous studies have typically selected land use types to evaluate ecosystem service value (ESV) and have overlooked comprehensive characteristics of ecosystem services and the mutual feedback relationship between human social systems and the ecosystem. Taking the Three Gorges Reservoir Area, Hubei section (TGRA-HS) as a case study, we used a transition matrix, the revised ESV method, and an ecological contribution rate model to explore land use function transition (LUFT) and its effects on the change in ESV based on the production–living–ecological space (PLES) classification system. The results show that: (1) The transition of land use function based on PLES was the mapping of the evolution of the human–nature relationship in the spatial pattern, which reflected the evolution of the spatial pattern caused by human interference with the continuous development of society; (2) The evolution of PLES showed the characteristics of a reduction in production space (P-space), and an expansion in living space (L-space) and ecological space (E-space). The distribution pattern of PLES from 1990 to 2020 was basically the same, and the characteristics of structural transform reflected the characteristics of project construction in different phases; (3) The E-space contributed the most to the total ESV, and it has risen by CNY 13.06 × 108. The transition of land use function caused by human construction projects impacts the spatiotemporal change in the regional ESV; (4) The change in ESV induced by LUFT revealed the whole dynamic process of the positive and negative effects of human construction projects on ecosystem services, and the two effects offset each other to keep the ESV relatively stable. The transition of E-space to P-space had the greatest impact on the reduction in ESV, whose contribution rate was 82.76%. The dynamic changes in land use function and ESV corresponding to the different stages of the Three Gorges Project’s (TGP) construction reveals the important driving effect of human activities on ecosystem services. It reminds us that humans should not forget to protect the eco-environment when obtaining services from the ecosystem
    • …
    corecore