20 research outputs found

    Role of the Small GTPase Rho3 in Golgi/Endosome Trafficking through Functional Interaction with Adaptin in Fission Yeast

    Get PDF
    BACKGROUND: We had previously identified the mutant allele of apm1(+) that encodes a homolog of the mammalian µ1A subunit of the clathrin-associated adaptor protein-1 (AP-1) complex, and we demonstrated the role of Apm1 in Golgi/endosome trafficking, secretion, and vacuole fusion in fission yeast. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we isolated rho3(+), which encodes a Rho-family small GTPase, an important regulator of exocystosis, as a multicopy-suppressor of the temperature-sensitive growth of the apm1-1 mutant cells. Overexpression of Rho3 suppressed the Cl(-) sensitivity and immunosuppressant sensitivity of the apm1-1 mutant cells. Overexpression of Rho3 also suppressed the fragmentation of vacuoles, and the accumulation of v-SNARE Syb1 in Golgi/endosomes and partially suppressed the defective secretion associated with apm1-deletion cells. Notably, electron microscopic observation of the rho3-deletion cells revealed the accumulation of abnormal Golgi-like structures, vacuole fragmentation, and accumulation of secretory vesicles; these phenotypes were very similar to those of the apm1-deletion cells. Furthermore, the rho3-deletion cells and apm1-deletion cells showed very similar phenotypic characteristics, including the sensitivity to the immunosuppressant FK506, the cell wall-damaging agent micafungin, Cl(-), and valproic acid. Green fluorescent protein (GFP)-Rho3 was localized at Golgi/endosomes as well as the plasma membrane and division site. Finally, Rho3 was shown to form a complex with Apm1 as well as with other subunits of the clathrin-associated AP-1 complex in a GTP- and effector domain-dependent manner. CONCLUSIONS/SIGNIFICANCE: Taken together, our findings reveal a novel role of Rho3 in the regulation of Golgi/endosome trafficking and suggest that clathrin-associated adaptor protein-1 and Rho3 co-ordinate in intracellular transport in fission yeast. To the best of our knowledge, this study provides the first evidence of a direct link between the small GTPase Rho and the clathrin-associated adaptor protein-1 in membrane trafficking

    Anodic Fluorination and Cathodic Michael Addition of Schiff Bases Bearing Trifluoromethyl and Ester Groups

    No full text
    Anodic fluorination of N-(diphenylmethyleneamino)-2,2,2-trifluoroethane and N-[bis(methylthio)methyleneamino]-2,2,2-triphenylethane in acetonitrile containing poly(HF) salt ionic liquids afforded monofluorinated products in moderate to good yields. On the other hand, anodic fluorination of N-[bis(methylthio)methylene]glycine methyl ester provided mono- and difluoroproducts depending on the amount of electricity passed. This is the first successful electrochemical fluorination of open-chain α-amino acid derivatives. Cathodic Michael addition of N-(diphenylmethyleneamino)-2,2,2-trifluoroethane to activated olefins such as acrylate and acrylonitrile was also successfully carried out using a titanium cathode
    corecore