47 research outputs found
Вміст сапонінів у кореневищах з коренями та листках первоцвіту весняного
Introduction. Primrose or primula (Primula L.) is a genus of Primulaceae family plants, which includes about 500 species, distributed throughout the globe. 67 species (according to some authors – 80) grow in the CIS countries, in Ukraine – nine of them; the most common is Primula veris.Primula veris L. is a medicinal, vitamin, nutritional, honeyed, dyeing and decorative plant. Its chemical composition is insufficiently studied despite the widespread usage of primula in medical practice. There is no information about research of saponins contents in leaves and underground organs of Primula veris of Ukrainian flora in the available sources of scientific literature.The aim of the study – to determine the content of saponins in leaves and rhizomes with roots of Primula veris.Research methods. Water and spirituous-water extracts of leaves and rhizomes with roots of Primula veris were studied for saponins content. The aqueous extract of primula was used for tests on foam formation and some sedimentary reactions. The determination of chemical nature of saponins was also done. Quantitative content of saponins was determined by spectrophotometric method on a spectrophotometer Lambda 25 UV at a wave length 381 nm with following conversion to aescin.Results and discussion. The emergence of stable foam and positive reactions with 10 % solution of basic lead acetate and 1 % alcoholic solution of cholesterol showed the presence of saponins in the leaves and rhizomes with roots of of the studied plant. It was found out during determining the chemical nature of saponins that the leaves and rhizomes with roots of Primula veris contain triterpene saponins – (1.27 ± 0.02) % and (3.69 ± 0.02) % respectively in conversion to aescin.Conclusion. It was experimentally proved that the leaves and rhizomes with roots of Primula veris contain triterpene saponins. For the first time it was defined quantitative content of saponins in leaves and underground organs of Primula veris from Ternopil region. The content of saponins in leaves was 1.27 %, in rhizomes with roots – 3.69 % in conversion to escin.Вступление. Первоцвет, или примула (Primula L.), – род растений семейства первоцветные (Primulaceae), который насчитывает около 500 видов, распространенных по всему земному шару. В странах СНГ растет 67 видов (по данным некоторых авторов – 80) рода, в Украине – 9; наиболее распространенным является первоцвет весенний. Первоцвет весенний (Primula veris L.) – лекарственное, витаминное, пищевое, медоносное, красильное, декоративное растение. Несмотря на широкое использование первоцвета весеннего в медицинской практике, химический состав его изучен недостаточно. В доступных источниках научной литературы отсутствуют данные об исследовании содержания сапонинов в листьях и корневищах с корнями первоцвета весеннего флоры Украины.Цель исследования – определить содержание сапонинов в листьях и корневищах с корнями первоцвета весеннего.Методы исследования. На наличие сапонинов исследовали водную и спирто-водную вытяжку листьев и корневищ с корнями первоцвета весеннего. Водную вытяжку первоцвета весеннего использовали для проведения пробы на пенообразование и некоторых осадочных реакций. Также определяли химическую природу сапонинов. Количественное содержание сапонинов определяли спектрофотометрическим методом на спектрофотометре Lambda 25 UV при длине волн 381 нм. Пересчет вели на эсцин.Результаты и обсуждение. Появление устойчивой пены и положительные реакции с 10 % раствором основного свинца ацетата и 1 % спиртовым раствором холестерина свидетельствовали о наличии сапонинов в корневищах с корнями и листьях исследуемого растения. При определении химической природы сапонинов установлено, что листья и корневища с корнями первоцвета весеннего содержат сапонины тритерпенового ряда. Результаты исследований показали, что листья первоцвета весеннего содержат (1,27±0,02) % сапонинов в пересчете на эсцин; корневища с корнями – (3,69±0,02) %.Выводы. 1. Экспериментально доказано, что листья и корневища с корнями первоцвета весеннего содержат сапонины тритерпенового ряда. Впервые определено количественное содержание сапонинов в листьях и подземных органах первоцвета весеннего, заготовленных на территории Тернопольской области. Содержание сапонинов в листьях составило 1,27 %, в корневищах с корнями – 3,69 % в пересчете на эсцин.Вступ. Первоцвіт, або примула (Primula L.), – рід рослин родини первоцвіті (Primulaceae), який нараховує близько 500 видів, поширених по всій земній кулі. У країнах СНД росте 67 видів (за даними деяких авторів – 80) роду, в Україні – 9; найпоширеніший – первоцвіт весняний. Первоцвіт весняний (Primula veris L.) – лікарська, вітамінна, харчова, медоносна, фарбувальна, декоративна рослина. Незважаючи на широке використання первоцвіту весняного в медичній практиці, хімічний склад його вивчено недостатньо. У доступних джерелах наукової літератури відсутні дані про дослідження вмісту сапонінів у листках і підземних органах первоцвіту весняного флори України.Мета дослідження – визначити вміст сапонінів у листках і кореневищах з коренями первоцвіту весняного.Методи дослідження. На наявність сапонінів досліджували водну і спиртово-водну витяжку листків та кореневищ з коренями первоцвіту весняного. Водну витяжку первоцвіту весняного використовували для проведення проби на піноутворення і деяких осадових реакцій. Також визначали хімічну природу сапонінів. Кількісний вміст сапонінів визначали спектрофотометричним методом на спектрофотометрі Lambda 25 UV при довжині хвиль 381 нм. Перерахунок вели на есцин.Результати й обговорення. Поява стійкої піни та позитивні реакції з 10 % розчином основного плюмбуму ацетату й 1 % спиртовим розчином холестерину свідчили про наявність сапонінів у кореневищах з коренями і листках досліджуваної рослини. При визначенні хімічної природи сапонінів встановлено, що листки та кореневища з коренями первоцвіту весняного містять сапоніни тритерпенового ряду. Результати досліджень показали, що листки первоцвіту весняного містять (1,27±0,02) % сапонінів у перерахунку на есцин, кореневища з коренями – (3,69±0,02) %.Висновки. Експериментально доведено, що листки і кореневища з коренями первоцвіту весняного містять сапоніни тритерпенового ряду. Вперше визначено кількісний вміст сапонінів у листках і підземних органах первоцвіту весняного, заготовлених на території Тернопільської області. Вміст сапонінів у листках становив 1,27 %, у кореневищах з коренями – 3,69 % у перерахунку на есцин
Use of juice production waste in food technology
Studies related to waste from the juice production of Chaenomeles fruits in food technologies as a natural food additive (source of organic acids, pectin and phenolic substances, and vitamins) are relevant. The research aims to improve food technologies by implementing the Zero-waste concept, which involves the use of secondary products of fruit processing as a source of valuable biologically active substances in the technologies of various food products. For the research, we used a variety mix of Vitamin, Citrine, and Orange Chaenomeles fruits, Chaenomeles pomace after juice extraction, Chaenomeles pomace processing products (water extracts, powder, mashed potatoes), food products (pickled mushrooms, meat pate, yeast products). Standard methods of analysis were used in the course of experimental studies. The qualitative indicators of raw materials and processed products of Chaenomeles were evaluated by organoleptic and physicochemical parameters. As a result of the research, it was found that the waste generated in the production of juice products from the fruits of the Chaenomeles is characterized by a significant content of organic acids, pectin, and phenolic substances, as well as L-ascorbic acid. The rational conditions for obtaining various secondary products of Chaenomeles processing: extract, powder, and puree were determined and experimentally tested. It was proved that the use of secondary products of Chaenomeles processing (mashed potatoes – 7.5 % by weight of flour, powder – 1.5 % by weight of flour, water extract – 40 % by weight of water) in the recipe composition of yeast flour products would reduce the duration of dough fermentation and increase its biological value. The feasibility of using aqueous extracts of Coleoptera in making pickled mushroom snacks as a substitute for citric acid solution for the pretreatment of mushroom raw materials to inactivate mushroom polyphenol oxidase was confirmed. It was determined that in the technologies of meat pates, the combination of meat raw materials (pork) and 8 % hydrated powder obtained from Chaenomeles pomace provides high organoleptic characteristics of the paste, reduces the content of animal fats and minimizes the caloric content of the paste; positively affects the moisture retention capacity and stability of the minced emulsion; increases the biological value of the product due to plant components
UCRAID (Ukrainian Citizen and refugee electronic support in Respiratory diseases, Allergy, Immunology and Dermatology) action plan
Eight million Ukrainians have taken refuge in the European Union. Many have asthma and/or allergic rhinitis and/or urticaria, and around 100,000 may have a severe disease. Cultural and language barriers are a major obstacle to appropriate management. Two widely available mHealth apps, MASK-air® (Mobile Airways Sentinel NetworK) for the management of rhinitis and asthma and CRUSE® (Chronic Urticaria Self Evaluation) for patients with chronic spontaneous urticaria, were updated to include Ukrainian versions that make the documented information available to treating physicians in their own language. The Ukrainian patients fill in the questionnaires and daily symptom-medication scores for asthma, rhinitis (MASK-air) or urticaria (CRUSE) in Ukrainian. Then, following the GDPR, patients grant their physician access to the app by scanning a QR code displayed on the physician's computer enabling the physician to read the app contents in his/her own language. This service is available freely. It takes less than a minute to show patient data to the physician in the physician's web browser. UCRAID—developed by ARIA (Allergic Rhinitis and its Impact on Asthma) and UCARE (Urticaria Centers of Reference and Excellence)—is under the auspices of the Ukraine Ministry of Health as well as European (European Academy of Allergy and Clinical immunology, EAACI, European Respiratory Society, ERS, European Society of Dermatologic Research, ESDR) and national societies
Concepts for the development of person-centred, digitally-enabled, Artificial Intelligence-assisted ARIA care pathways (ARIA 2024)
The traditional healthcare model is focused on diseases (medicine and natural science) and does not acknowledge patients' resources and abilities to be experts in their own life based on their lived experiences. Improving healthcare safety, quality and coordination, as well as quality of life, are important aims in the care of patients with chronic conditions. Person-centred care needs to ensure that people's values and preferences guide clinical decisions. This paper reviews current knowledge to develop (i) digital care pathways for rhinitis and asthma multimorbidity and (ii) digitally-enabled person-centred care (1). It combines all relevant research evidence, including the so-called real-world evidence, with the ultimate goal to develop digitally-enabled, patient-centred care. The paper includes (i) Allergic Rhinitis and its Impact on Asthma (ARIA), a two-decade journey, (ii) Grading of Recommendations, Assessment, Development and Evaluation (GRADE), the evidence-based model of guidelines in airway diseases, (iii) mHealth impact on airway diseases, (iv) from guidelines to digital care pathways, (v) embedding Planetary Health, (vi) novel classification of rhinitis and asthma, (vi) embedding real-life data with population-based studies, (vii) the ARIA-EAACI strategy for the management of airway diseases using digital biomarkers, (viii) Artificial Intelligence, (ix) the development of digitally-enabled ARIA Person-Centred Care and (x) the political agenda. The ultimate goal is to propose ARIA 2024 guidelines centred around the patient in order to make them more applicable and sustainable
Is diet partly responsible for differences in COVID-19 death rates between and within countries?
Correction: Volume: 10 Issue: 1 Article Number: 44 DOI: 10.1186/s13601-020-00351-w Published: OCT 26 2020Reported COVID-19 deaths in Germany are relatively low as compared to many European countries. Among the several explanations proposed, an early and large testing of the population was put forward. Most current debates on COVID-19 focus on the differences among countries, but little attention has been given to regional differences and diet. The low-death rate European countries (e.g. Austria, Baltic States, Czech Republic, Finland, Norway, Poland, Slovakia) have used different quarantine and/or confinement times and methods and none have performed as many early tests as Germany. Among other factors that may be significant are the dietary habits. It seems that some foods largely used in these countries may reduce angiotensin-converting enzyme activity or are anti-oxidants. Among the many possible areas of research, it might be important to understand diet and angiotensin-converting enzyme-2 (ACE2) levels in populations with different COVID-19 death rates since dietary interventions may be of great benefit.Peer reviewe
Concepts for the Development of Person-Centered, Digitally Enabled, Artificial Intelligence–Assisted ARIA Care Pathways (ARIA 2024)
Funding Information: This work has received funding from ARIA (Allergic Rhinitis and its Impact of Asthma); CATALYSE (Climate Action To Advance HeaLthY Societies in Europe), the European Union\u2019s Horizon Europe research and innovation program under grant agreement no. 101057131; FRAUNHOFER Institute for Translational Medicine and Pharmacology (ITMP), Immunology and Allergology, Berlin, Germany; University of Porto, Portugal; and MASK-air, which has been supported by EU grants (Impact of air Pollution on Asthma and Rhinitis [POLLAR] project of the European Institute of Innovation and Technology Health; Structural and Development Funds, R\u00E9gion Languedoc Roussillon and Provence-Alpes-C\u00F4te d\u2019Azur; Twinning, European Innovation Partnership on Active and Healthy Ageing, DG Sant\u00E9 and DG Connect); educational grants from Mylan-Viatris, Allergologisk Laboratorium K\u00F8benhavn, GlaxoSmithKline, Novartis, Stallerg\u00E8nes-Greer, and Noucor; and funding from Breathing Together Onlus Association (Associazione Respiriamo Insieme Onlus), Italy; Esp\u00EDritu Santo University, Samborond\u00F3n, Ecuador; Finnish Anti-Tuberculosis Association Foundation and Tampere Tuberculosis Foundation; GA 2 LEN; German Allergy Society AeDA (\u00C4rzteverband Deutscher Allergologen); IPOKRaTES (International Postgraduate Organization for Knowledge transfer, Research and Teaching Excellent Students) Lithuania Fund; Polish Society of Allergology (POLSKIE TOWARZYSTWO ALLERGOLOGICZNE); and University of Li\u00E8ge, Belgium. Funding Information: Conflicts of interest: J. Bousquet reports personal fees from Cipla, Menarini, Mylan, Novartis, Purina, Sanofi-Aventis, Teva, Noucor, other from KYomed-Innov, and other from Mask-air-SAS, outside the submitted work. M. Blaiss reports personal fees from Sanofi, personal fees from Regeneron, personal fees from ALK, personal fees from Merck, personal fees from AstraZeneca, personal fees from GSK, personal fees from Prollergy, personal fees from Lanier Biotherapeutics, and nonfinancial support from Bryn Phama, outside the submitted work. J. Lity\u0144ska reports personal fees from Evidence Prime Sp. z o.o., outside the submitted work. T. Iinuma reports grants from Sanofi, outside the submitted work. P. Tantilipikorn reports grants from Abbott, other from GSK, and other from Sanofi Aventis, outside the submitted work. T. Haahtela reports personal fees from Orion Pharma, outside the submitted work. Publisher Copyright: © 2024 The AuthorsThe traditional healthcare model is focused on diseases (medicine and natural science) and does not acknowledge patients’ resources and abilities to be experts in their own lives based on their lived experiences. Improving healthcare safety, quality, and coordination, as well as quality of life, is an important aim in the care of patients with chronic conditions. Person-centered care needs to ensure that people's values and preferences guide clinical decisions. This paper reviews current knowledge to develop (1) digital care pathways for rhinitis and asthma multimorbidity and (2) digitally enabled, person-centered care.1 It combines all relevant research evidence, including the so-called real-world evidence, with the ultimate goal to develop digitally enabled, patient-centered care. The paper includes (1) Allergic Rhinitis and its Impact on Asthma (ARIA), a 2-decade journey, (2) Grading of Recommendations, Assessment, Development and Evaluation (GRADE), the evidence-based model of guidelines in airway diseases, (3) mHealth impact on airway diseases, (4) From guidelines to digital care pathways, (5) Embedding Planetary Health, (6) Novel classification of rhinitis and asthma, (7) Embedding real-life data with population-based studies, (8) The ARIA-EAACI (European Academy of Allergy and Clinical Immunology) strategy for the management of airway diseases using digital biomarkers, (9) Artificial intelligence, (10) The development of digitally enabled, ARIA person-centered care, and (11) The political agenda. The ultimate goal is to propose ARIA 2024 guidelines centered around the patient to make them more applicable and sustainable.proofinpres
Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies
There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity
Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19
Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe