272 research outputs found

    Oceanographic features of a submarine eruption that destroyed the Kaiyo-Maru No. 5

    Get PDF
    When Myojinsho Reef erupted in September 1952, tsunami waves were recorded several times by a. self-registering wave gauge installed on the southwestern coast of Hachijo Island about 130 km from that Reef. The largest one of these tsunamis appeared on 24 September, and it is presumed that this wave ca.used the destruction of the KAIYO-MARU No. 5. Results of investigation of these recorded tsunami waves and other phenomena are reported

    Millimeter- and Submillimeter-Wave Observations of the OMC-2/3 Region. II. Observational Evidence for Outflow-Triggered Star Formation in the OMC-2 FIR 3/4 Region

    Full text link
    We have carried out the observations of the OMC-2 FIR 3/4 region with the NMA and ASTE in the H13^{13}CO+^{+} (1--0), 12^{12}CO (3--2, 1--0), SiO (vv=0, JJ=2--1), CS (2--1), and CH3_3OH (JKJ_K=7K_K--6K_K) lines and in the 3.3 mm continuum emission. Our NMA observations in the H13^{13}CO+^{+} emission have revealed 0.07 pc-scale dense gas associated with FIR 4. The 12^{12}CO (3--2,1--0) emission shows high-velocity blue and red shifted components at the both north-east and south-west of FIR 3, suggesting a molecular outflow nearly along the plane of the sky driven by FIR 3. The SiO and the CH3_{3}OH emission are detected around the interface between the outflow and the dense gas. Furthermore, the 12^{12}CO (1--0) emission shows an L-shaped structure in the P-V diagram. These results imply presence of the shock due to the interaction between the molecular outflow driven by FIR 3 and the dense gas associated with FIR 4. Moreover, our high angular-resolution observations of FIR 4 in the 3.3 mm continuum emission have first found that FIR 4 consists of eleven dusty cores. The separation among these cores is on the same order of the Jeans length, suggesting that the fragmentation into these cores has been caused by the gravitational instability. The time scale of the fragmentation is similar to the time scale of the interaction between the molecular outflow and the dense gas. We suggest that the interaction between the molecular outflow from FIR 3 and the dense gas associated with FIR 4 triggered the fragmentation into these dusty cores, and hence the next generation the cluster formation.Comment: 13 pages, 9 figures. Accepted by Ap

    Laparoscopic fundoplication for neurologically impaired adolescents with severe scoliosis

    Get PDF
    AbstractLaparoscopic antireflux procedure for patients with severe scoliosis is often challenging, as the esophageal hiatus lies in an extremely deep position and is frequently rotated. Reports regarding the clinical results of laparoscopic fundoplication are scarce, especially in patients with severe scoliosis. In this study, laparoscopic Nissen fundoplication was applied to seven adolescent patients aged between 19 and 29 years with neurological impairment and gastroesophageal reflux disease (GERD). The scoliosis among them was considerably severe with a median Cobb angle of 131°. Follow-up was conducted with a median period of 7.8 years. There was no intraoperative complication or recurrence of GERD. Two patients required tracheostomy, and one died due to recurrent pneumonia after fundoplication. Our experience suggested the feasibility of laparoscopic Nissen fundoplication with an arrangement of port layout even in neurologically impaired adolescents with severe scoliosis. As recurrent aspiration pneumonia can persist after fundoplication in some patients, an anti-aspiration procedure may be considered to achieve a higher quality of life

    Improving the tensile properties of additively manufactured β-containing tial alloys via microstructure control focusing on cellular precipitation reaction

    Get PDF
    The effect of a two-step heat treatment on the microstructure and high-temperature tensile properties of β-containing Ti-44Al-4Cr (at%) alloys fabricated by electron beam powder bed fusion were examined by focusing on the morphology of α2/γ lamellar grains and β/γ cells precipitated at the lamellar grain boundaries by a cellular precipitation reaction. The alloys subjected to the first heat treatment step at 1573 K in the α + β two-phase region exhibit a non-equilibrium microstructure consisting of the α2/γ lamellar grains with a fine lamellar spacing and a β/γ duplex structure located at the grain boundaries. In the second step of heat treatment, i.e., aging at 1273 K in the β + γ two-phase region, the β/γ cells are discontinuously precipitated from the lamellar grain boundaries due to excess Cr supersaturation in the lamellae. The volume fraction of the cells and lamellar spacing increase with increasing aging time and affect the tensile properties of the alloys. The aged alloys exhibit higher strength and comparable elongation at 1023 K when compared to the as-built alloys. The strength of these alloys is strongly dependent on the volume fraction and lamellar spacing of the α2/γ lamellae. In addition, the morphology of the β/γ cells is also an important factor controlling the fracture mode and ductility of these alloys.Cho K., Odo H., Okamoto K., et al. Improving the tensile properties of additively manufactured β-containing tial alloys via microstructure control focusing on cellular precipitation reaction. Crystals, 11, 7, 809. https://doi.org/10.3390/cryst11070809

    Peculiar microstructural evolution and tensile properties of β-containing γ-TiAl alloys fabricated by electron beam melting

    Get PDF
    The microstructure and tensile properties of β-containing Ti–44Al–4Cr alloy rods additively manufactured by electron beam melting (EBM) process were examined as a function of input energy density determined by the processing parameters. To the best of our knowledge, this is the first report to demonstrate that two types of fine microstructures have been obtained in the β-containing γ-TiAl alloys by varying the energy density during the EBM process. A uniform α2/β/γ mixed structure containing an α2/γ lamellar region and a β/γ dual-phase region is formed at high energy density conditions. On the other hand, a lower energy density leads to the formation of a peculiar layered microstructure perpendicular to the building direction, consisting of a ultrafine α2/γ lamellar grain layer and a α2/β/γ mixed structure layer. The difference in the microstructures originates from the difference in the solidification microstructure and the temperature distribution from the melt pool, which are dependent on the energy density. Furthermore, it was found that the strength of the alloys is closely related to the volume fractions of the β phase and the ultrafine α2/γ lamellar grains which originates from the massive α grains formed by rapid cooling under low energy density conditions. The alloys with high amounts of these peculiar microstructures exhibit high strength comparable to and higher than the conventional β-containing γ-TiAl at room temperature and 1023 K, respectively.Cho K., Kawabata H., Hayashi T., et al. Peculiar microstructural evolution and tensile properties of β-containing γ-TiAl alloys fabricated by electron beam melting. Additive Manufacturing, 46, 102091. https://doi.org/10.1016/j.addma.2021.102091
    • …
    corecore