169 research outputs found

    Compact atom source using fiber-based pulsed laser ablation

    Full text link
    We designed, demonstrated, and characterized an atom source based on fiber-based pulsed laser ablation. By using commercially available miniature lens system for focusing nanosecond pulsed laser of up to 225~μ\muJ delivered through a multimode fiber of 105~μ\mum core, we successfully ablate a SrTiO3_3 target and generate a jet of neutral strontium atoms, though our method can be applied to other transparent ablation targets containing materials under concern. Our device endures 6\,000 cycles of pulse delivery and irradiation without noticeable damage on the fiber facets and lenses. The generated strontium beam is characterized with spectroscopic method and is revealed to exhibit the transverse temperature of 800~K and longitudinal velocity of 2\,300~m/s, which are typical of pulsed-laser-ablation-based atom source. The number of atoms generated by a single ablation pulse is estimated to be 2×1052\times 10^5. Our device provides a compact, cryo-compatible fiber-pigtailed atom source with minimized device footprints and reduced complexity of vacuum systems to further promote the developments of cold-atom experiments. It may also find interesting applications in atomic and molecular sciences.Comment: 4 pages, 3 figure

    PICO-LON Project for WIMPs search

    Full text link
    Highly segmented inorganic crystal has been shown to have good performance for dark matter search. The energy resolution of ultra thin and large area NaI(Tl) scintillator has been developed. The estimated sensitivity for spin-dependent excitation of 127I was discussed. The recent status of low background measurement at Oto Cosmo Observatory is reportedComment: 3 pages, 1 figure, Proceedings of TAUP200

    Mast cells mediate neutrophil recruitment and vascular leakage through the NLRP3 inflammasome in histamine-independent urticaria

    Get PDF
    Urticarial rash observed in cryopyrin-associated periodic syndrome (CAPS) caused by nucleotide-binding oligomerization domain–leucine-rich repeats containing pyrin domain 3 (NLRP3) mutations is effectively suppressed by anti–interleukin (IL)-1 treatment, suggesting a pathophysiological role of IL-1β in the skin. However, the cellular mechanisms regulating IL-1β production in the skin of CAPS patients remain unclear. We identified mast cells (MCs) as the main cell population responsible for IL-1β production in the skin of CAPS patients. Unlike normal MCs that required stimulation with proinflammatory stimuli for IL-1β production, resident MCs from CAPS patients constitutively produced IL-1β. Primary MCs expressed inflammasome components and secreted IL-1β via NLRP3 and apoptosis-associated speck-like protein containing a caspase recruitment domain when stimulated with microbial stimuli known to activate caspase-1. Furthermore, MCs expressing disease-associated but not wild-type NLRP3 secreted IL-1β and induced neutrophil migration and vascular leakage, the histological hallmarks of urticarial rash, when transplanted into mouse skin. Our findings implicate MCs as IL-1β producers in the skin and mediators of histamine-independent urticaria through the NLRP3 inflammasome

    Novel method for rapid in-situ hybridization of HER2 using non-contact alternating-current electric-field mixing

    Get PDF
    Human epidermal growth factor receptor 2 (HER2)-targeted agents are an effective approach to treating HER2-positive breast cancer patients. However, the lack of survival benefit in HER2-negative patients as well as the toxic effects and high cost of the drugs highlight the need for accurate and prompt assessment of HER2 status. Our aim was to evaluate the clinical utility of a novel rapid dual in-situ hybridization (RISH) method developed to facilitate hybridization. The method takes advantage of the non-contact mixing effect of an alternating current (AC) electric field. One hundred sixty-three specimens were used from patients diagnosed with primary breast cancers identified immunohistochemically as HER2 0/1(+), (2+) or (3+). The specimens were all tested using conventional dual in-situ hybridization (DISH), DISH with an automated slide stainer, and RISH. With RISH the HER2 test was completed within 6 h, as compared to 20-22 h needed for the standard protocol. Although RISH produced results more promptly using smaller amounts of labeled antibody, the staining and accuracy of HER2 status evaluation with RISH was equal to or greater than with DISH. These results suggest RISH could be used as a clinical tool to promptly determine HER2 status

    Novel method for rapid fluorescence in-situ hybridization of ALK rearrangement using non-contact alternating current electric field mixing

    Get PDF
    Echinoderm microtubule-associated protein-like 4 gene and anaplastic lymphoma kinase gene (EML4-ALK) rearrangement is a key driver mutation in non-small cell lung cancer (NSCLC). Although Break-Apart ALK fluorescence in situ hybridization (FISH) is a reliable diagnostic method for detecting ALK gene rearrangement, it is too costly and time-consuming for use as a routine screening test. Our aim was to evaluate the clinical utility of a novel rapid FISH (RaFISH) method developed to facilitate hybridization. RaFISH takes advantage of the non-contact mixing effect of an alternating current (AC) electric field. Eighty-five specimens were used from patients diagnosed with NSCLC identified immunohistochemically as ALK 0, (1/2+) or (3+). With RaFISH, the ALK test was completed within 4.5 h, as compared to 20 h needed for the standard FISH. Although RaFISH produced results more promptly, the staining and accuracy of the ALK evaluation with RaFISH was equal to the standard. We found 97.6% agreement between FISH and RaFISH based on the status of the ALK signals. These results suggest RaFISH could be used as a clinical tool to promptly determine ALK status
    corecore