184 research outputs found

    One-pot esterification and amidation of phenolic acids

    Get PDF
    We developed a new one-pot reaction of phenolic acids to afford the corresponding esters and amides through acyl-protected and activated phenolic acid intermediates. The simultaneous protection/activation of phenolic acids with alkylchloroformates proceeded readily in the presence of DMAP at room temperature; subsequent addition of alcohols or amines afforded the corresponding esters or amides. The use of iso-butyloxycarbonyl as the protecting and activating group in the one-pot reactions afforded phenolic esters or amides in 91% average yield. As a practical example of this convenient synthesis, caffeic acid phenethyl ester (CAPE) was readily synthesized from commercially available caffeic acid and phenethyl alcohol in 95% yield, and an isotopomer of CAPE, [3,10-13C2]CAPE, was synthesized in 91% yield from [3-13C]caffeic acid and 2-[1-13C]phenethyl alcohol. This method may be useful for the convenient esterification and amidation of diverse phenolic acids.ArticleTETRAHEDRON. 70(43):8097-8107 (2014)journal articl

    PPARα Activation Protects against Anti-Thy1 Nephritis by Suppressing Glomerular NF-κB Signaling

    Get PDF
    The vast increase of chronic kidney disease (CKD) has attracted considerable attention worldwide, and the development of a novel therapeutic option against a representative kidney disease that leads to CKD, mesangial proliferative glomerulonephritis (MsPGN) would be significant. Peroxisome proliferator-activated receptor α (PPARα), a member of the steroid/nuclear receptor superfamily, is known to perform various physiological functions. Recently, we reported that PPARα in activated mesangial cells exerted anti-inflammatory effects and that the deficiency of PPARα resulted in high susceptibility to glomerulonephritis. To investigate whether PPARα activation improves the disease activity of MsPGN, we examined the protective effects of a PPARα agonist, clofibrate, in a well-established model of human MsPGN, anti-Thy1 nephritis, for the first time. This study demonstrated that pretreatment with clofibrate (via a 0.02% or 0.1% clofibrate-containing diet) continuously activated the glomerular PPARα, which outweighed the PPARα deterioration associated with the nephritic process. The PPARα activation appeared to suppress the NF-κB signaling pathway in glomeruli by the induction of IκBα, resulting in the reduction of proteinuria and the amelioration of the active inflammatory pathologic glomerular changes. These findings suggest the antinephritic potential of PPARα-related medicines against MsPGN. PPARα-related medicines might be useful as a treatment option for CKD

    Fatty Acid Accumulation and Resulting PPARα Activation in Fibroblasts due to Trifunctional Protein Deficiency

    Get PDF
    To examine fatty acid accumulation and its toxic effects in cells, we analyzed skin fibroblasts from six patients with mitochondrial trifunctional protein deficiency, who had abnormalities in the second through fourth reactions in fatty acid β-oxidation system. We found free fatty acid accumulation, enhanced three acyl-CoA dehydrogenases, catalyzing the first reaction in the β-oxidation system and being assumed to have normal activities in these patients, and PPARα activation that was confirmed in the experiments using MK886, a PPARα specific antagonist and fenofibrate, a PPARα specific agonist. These novel findings suggest that the fatty acid accumulation and the resulting PPARα activation are major causes of the increase in the β-oxidation ability as probable compensation for fatty acid metabolism in the patients' fibroblasts, and that enhanced cell proliferation and increased oxidative stress due to the PPARα activation relate to the development of specific clinical features such as hypertrophic cardiomyopathy, slight hepatomegaly, and skeletal myopathy. Additionally, significant suppression of the PPARα activation by means of MK886 treatment is assumed to provide a new method of treating this deficiency

    Kidney transplantation recovers the reduction level of serum sulfatide in ESRD patients via processes correlated to oxidative stress and platelet count

    Get PDF
    Sulfatide is a major component of glycosphingolipids in lipoproteins. Recently, we reported that a low serum level of sulfatide in hemodialysis patients might be related to the high incidence of cardiovascular diseases. However, the serum kinetics of sulfatide in kidney disease patients and the function of endogenous serum sulfatide are still unclear. To obtain novel knowledge concerning these issues, we investigated the serum kinetics of sulfatide in 5 adult kidney transplant recipients. We also analyzed the correlated factors influencing the serum sulfatide level, using multiple regression analysis. Kidney transplantation caused a dramatic increase of serum sulfatide without an alteration of its composition in all recipients in a time-dependent manner; however, the recovery speed was slower than that of the improvement of kidney function and the serum sulfatide reached a nearly normal level after 1 year. Multiple regression analysis showed that the significant correlated factor influencing the serum sulfatide level was log duration (time parameter) throughout the observation period, and the correlated factors detected in the stable phase were the decrease of serum concentration of malondialdehyde (an oxidative stress marker) as well as the elevation of platelet count. The current study results demonstrated the gradual but reliable recovery of the serum sulfatide level in kidney transplant recipients for the first time, suggesting a close correlation between serum sulfatide and kidney function. The recovery of serum sulfatide might derive from the attenuation of systemic oxidative stress. The normal level of serum sulfatide in kidney transplant recipients might affect platelet function, and contribute to the reduction of cardiovascular disease incidence.ArticleGLYCOCONJUGATE JOURNAL. 28(3-4):125-135 (2011)journal articl

    Acute kidney injury induced by protein-overload nephropathy down-regulates gene expression of hepatic cerebroside sulfotransferase in mice, resulting in reduction of liver and serum sulfatides

    Get PDF
    Sulfatides, possible antithrombotic factors belonging to sphingoglycolipids, are widely distributed in mammalian tissues and serum. We recently found that the level of serum sulfatides was significantly lower in hemodialysis patients than that in normal subjects, and that the m serum level closely correlated to the incidence of cardiovascular disease. These findings suggest a relationship between the level of serum sulfatides and kidney function; however, the molecular mechanism underlying this relationship remains unclear. In the present study, the influence of kidney dysfunction on the metabolism of sulfatides was examined using an established murine model of acute kidney injury, protein-overload nephropathy in mice. Protein-overload treatment caused severe proximal tubular injuries within 4 days, and this treatment obviously decreased both serum and hepatic sulfatide levels. The sphingoid composition of serum sulfatides was very similar to that of hepatic ones at each time point, suggesting that the serum sulfatide level is dependent on the hepatic secretory ability of sulfatides. The treatment also decreased hepatic expression of cerebroside sulfotransferase (CST), a key enzyme in sulfatide metabolism, while it scarcely influenced the expression of the other sulfatide-metabolizing enzymes, including arylsulfatase A, ceramide galactosyltransferase, and galactosylceramidase. Pro-inflammatory responses were not detected in the liver of these mice: however, potential oxidative stress was increased. These results suggest that down-regulation of hepatic CST expression, probably affected by oxidative stress from kidney injury, causes reduction in liver and serum sulfatide levels. This novel mechanism, indicating the crosstalk between kidney injury and specific liver function, may prove useful for helping to understand the situation where human hemodialysis patients have low levels of serum sulfatides.ArticleBIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. 390(4):1382-1388 (2009)journal articl

    A New Navigation System for Minimally Invasive Total Knee Arthroplasty

    Get PDF
    A computer-assisted navigation system to be used for total knee arthroplasties (TKAs) was reported to improve the accuracy of bone resection and result in precise implant placement, but the concomitant surgical invasion and time consumption are clinical problems. We developed a computed tomography (CT)-based navigation system (NNS) to be used for minimally invasive TKA. It requires only the reference points from a small limited area of the medial femoral condyle and proximal tibia through a skin incision to obtain optical images. Here we evaluated the usefulness and accuracy of the NNS in comparison with the commercially available BrainLAB image-free navigation system (BLS). In a clinical experiment, the registration times obtained with the NNS tended to be shorter than those obtained with the BLS, but not significantly so. The NNS group tended to be in the extended position in the sagittal plane of the distal femur within 3 degrees, and the BLS group showed rather flexed deviation in the sagittal plane of the anterior femur

    Peroxisome proliferator-activated receptor alpha mediates enhancement of gene expression of cerebroside sulfotransferase in several murine organs

    Get PDF
    Sulfatides, 3-O-sulfogalactosylceramides, are known to have multifunctional properties. These molecules are distributed in various tissues of mammals, where they are synthesized from galactosylceramides by sulfation at C3 of the galactosyl residue. Although this reaction is specifically catalyzed by cerebroside sulfotransferase (CST), the mechanisms underlying the transcriptional regulation of this enzyme are not understood. With respect to this issue, we previously found potential sequences of peroxisome proliferator-activated receptor (PPAR) response element on upstream regions of the mouse CST gene and presumed the possible regulation by the nuclear receptor PPAR alpha. To confirm this hypothesis, we treated wild-type and Ppara-null mice with the specific PPAR alpha agonist fenofibrate and examined the amounts of sulfatides and CST gene expression in various tissues. Fenofibrate treatment increased sulfatides and CST mRNA levels in the kidney, heart, liver, and small intestine in a PPAR alpha-dependent manner. However, these effects of fenofibrate were absent in the brain or colon. Fenofibrate treatment did not affect the mRNA level of arylsulfatase A, which is the key enzyme for catalyzing desulfation of sulfatides, in any of these six tissues. Analyses of the DNA-binding activity and conventional gene expression targets of PPAR alpha has demonstrated that fenofibrate treatment activated PPAR alpha in the kidney, heart, liver, and small intestine but did not affect the brain or colon. These findings suggest that PPAR alpha activation induces CST gene expression and enhances sulfatide synthesis in mice, which suggests that PPAR alpha is a possible transcriptional regulator for the mouse CST gene.ArticleGLYCOCONJUGATE JOURNAL. 30(6):553-560 (2013)journal articl

    Kidney dysfunction induced by protein overload nephropathy reduces serum sulfatide levels in mice

    Get PDF
    We recently proposed serum sulfatides as a novel biomarker for cardiovascular disease in patients with end-stage renal failure (ESRF), based on the possible antithrombotic properties of this molecule. In this earlier study, the level of serum sulfatides was gradually decreased in parallel with kidney dysfunction; however the precise mechanism underlying this decrease was unknown. The aim of the present study was to investigate the mechanism underlying the decrease in serum sulfatide levels caused by kidney dysfunction in an experimental animal model. To produce a kidney dysfunction animal model, we prepared a mouse model of protein overload nephropathy. Using high-throughput analysis combined with matrix-assisted laser desorption ionisation time-of-flight mass spectrometry, we measured the levels of sulfatides in the sera, livers, small intestines and kidneys of protein overload nephropathy mice. As the disease progressed, the levels of sulfatides in sera decreased. Also, the levels in livers and small intestines decreased in a similar manner to those in sera, to approximately 60% of the original levels. On the contrary, those in kidneys increased by approximately 1.4-fold. Our results indicate that kidney dysfunction affects the levels of sulfatides in lipoprotein-producing organs, such as livers and small intestines, and lowers the levels of sulfatides in sera.ArticleNEPHROLOGY. 14(7):658-662 (2009)journal articl

    Multiple roles of PPAR alpha in brown adipose tissue under constitutive and cold conditions

    Get PDF
    Peroxisome proliferator-activated receptor alpha (PPAR alpha) is a member of the nuclear receptor family, regulating fatty acid degradation in many organs. Two-dimensional SDS-PAGE of brown adipose tissue (BAT) from PPAR alpha-null mice produced a higher-density spot. Proteomic analysis indicated that the protein was pyruvate dehydrogenase beta (PDH beta). To observe PDH beta regulation in BAT, the organ was stimulated by long-term cold exposure, and the activities of associated enzymes were investigated. Histological and biochemical analyses of BAT showed a significant decrease in the triglyceride content in wild-type mice and some degree of decrease in PPAR alpha-null mice on cold exposure. Analyses of molecules related to glucose metabolism showed that the expression of PDH beta is under PPAR alpha-specific regulation, and that glucose degradation ability may decrease on cold exposure. In contrast, analyses of molecules related to fatty acid metabolism showed that numerous PPAR alpha/gamma target molecules are induced on cold exposure, and that fatty acid degradation ability in wild-type mice is markedly enhanced and also increases to same degree in PPAR alpha-null mice on cold exposure. Thus, this study proposes novel and multiple roles of PPAR alpha in BAT.ArticleGENES TO CELLS. 15(2):91-100 (2010)journal articl

    Atropisomeric Chiral Diiododienes (Z,Z)-2,3-Di(1-iodoalkylidene)tetralins : Synthesis, Enantiomeric Resolution, and Application in Asymmetric Catalysis

    Get PDF
    The C2-symmetric tetralin-fused 1,4-diiodo-1,3-butadiene derivatives, (Z,Z)-2,3-di(1-iodoalkylidene)tetralin 1a-c, are atropisomeric and can be resolved into the two persistent axially chiral enantiomers by HPLC on a chiral stationary phase. The enantiomerically pure compounds can serve as chiral organocatalysts for dearomatizing spirolactonization to show good performances in up to 73 % ee
    corecore