1,785 research outputs found

    Detectability of High Redshift Ellipticals in the Hubble Deep Field

    Get PDF
    Relatively few intensively star-forming galaxies at redshifts z>2.5 have been found in the Hubble Deep Field (HDF). This has been interpreted to imply a low space density of elliptical galaxies at high z, possibly due to a late (z<2.5) epoch of formation, or to dust obscuration of the ellipticals that are forming at z~3. I use HST UV (2300 Ang) images of 25 local early-type galaxies to investigate a third option, that ellipticals formed at z>4.5, and were fading passively by 2<z<4.5. Present-day early-types are faint and centrally concentrated in the UV. If ellipticals formed their stars in a short burst at z>4.5, and have faded passively to their present brightnesses at UV wavelengths, they would generally be below the HDF detection limits in any of its bands at z>2.5. Quiescent z ~ 3 ellipticals, if they exist, should turn up in sufficiently deep IR images.Comment: AAS LaTex, 11 pages, 1 table, 1 figure, some corrections and clarifications, accepted for publication in ApJ

    Dynamics of Three Agent Games

    Full text link
    We study the dynamics and resulting score distribution of three-agent games where after each competition a single agent wins and scores a point. A single competition is described by a triplet of numbers pp, tt and qq denoting the probabilities that the team with the highest, middle or lowest accumulated score wins. We study the full family of solutions in the regime, where the number of agents and competitions is large, which can be regarded as a hydrodynamic limit. Depending on the parameter values (p,q,t)(p,q,t), we find six qualitatively different asymptotic score distributions and we also provide a qualitative understanding of these results. We checked our analytical results against numerical simulations of the microscopic model and find these to be in excellent agreement. The three agent game can be regarded as a social model where a player can be favored or disfavored for advancement, based on his/her accumulated score. It is also possible to decide the outcome of a three agent game through a mini tournament of two-a gent competitions among the participating players and it turns out that the resulting possible score distributions are a subset of those obtained for the general three agent-games. We discuss how one can add a steady and democratic decline rate to the model and present a simple geometric construction that allows one to write down the corresponding score evolution equations for nn-agent games

    Popularity-Driven Networking

    Full text link
    We investigate the growth of connectivity in a network. In our model, starting with a set of disjoint nodes, links are added sequentially. Each link connects two nodes, and the connection rate governing this random process is proportional to the degrees of the two nodes. Interestingly, this network exhibits two abrupt transitions, both occurring at finite times. The first is a percolation transition in which a giant component, containing a finite fraction of all nodes, is born. The second is a condensation transition in which the entire system condenses into a single, fully connected, component. We derive the size distribution of connected components as well as the degree distribution, which is purely exponential throughout the evolution. Furthermore, we present a criterion for the emergence of sudden condensation for general homogeneous connection rates.Comment: 5 pages, 2 figure

    Discrete Analog of the Burgers Equation

    Full text link
    We propose the set of coupled ordinary differential equations dn_j/dt=(n_{j-1})^2-(n_j)^2 as a discrete analog of the classic Burgers equation. We focus on traveling waves and triangular waves, and find that these special solutions of the discrete system capture major features of their continuous counterpart. In particular, the propagation velocity of a traveling wave and the shape of a triangular wave match the continuous behavior. However, there are some subtle differences. For traveling waves, the propagating front can be extremely sharp as it exhibits double exponential decay. For triangular waves, there is an unexpected logarithmic shift in the location of the front. We establish these results using asymptotic analysis, heuristic arguments, and direct numerical integration.Comment: 6 pages, 5 figure

    Kinetics of Heterogeneous Single-Species Annihilation

    Full text link
    We investigate the kinetics of diffusion-controlled heterogeneous single-species annihilation, where the diffusivity of each particle may be different. The concentration of the species with the smallest diffusion coefficient has the same time dependence as in homogeneous single-species annihilation, A+A-->0. However, the concentrations of more mobile species decay as power laws in time, but with non-universal exponents that depend on the ratios of the corresponding diffusivities to that of the least mobile species. We determine these exponents both in a mean-field approximation, which should be valid for spatial dimension d>2, and in a phenomenological Smoluchowski theory which is applicable in d<2. Our theoretical predictions compare well with both Monte Carlo simulations and with time series expansions.Comment: TeX, 18 page

    Nonlinear Integral-Equation Formulation of Orthogonal Polynomials

    Full text link
    The nonlinear integral equation P(x)=\int_alpha^beta dy w(y) P(y) P(x+y) is investigated. It is shown that for a given function w(x) the equation admits an infinite set of polynomial solutions P(x). For polynomial solutions, this nonlinear integral equation reduces to a finite set of coupled linear algebraic equations for the coefficients of the polynomials. Interestingly, the set of polynomial solutions is orthogonal with respect to the measure x w(x). The nonlinear integral equation can be used to specify all orthogonal polynomials in a simple and compact way. This integral equation provides a natural vehicle for extending the theory of orthogonal polynomials into the complex domain. Generalizations of the integral equation are discussed.Comment: 7 pages, result generalized to include integration in the complex domai

    Percolation with Multiple Giant Clusters

    Full text link
    We study the evolution of percolation with freezing. Specifically, we consider cluster formation via two competing processes: irreversible aggregation and freezing. We find that when the freezing rate exceeds a certain threshold, the percolation transition is suppressed. Below this threshold, the system undergoes a series of percolation transitions with multiple giant clusters ("gels") formed. Giant clusters are not self-averaging as their total number and their sizes fluctuate from realization to realization. The size distribution F_k, of frozen clusters of size k, has a universal tail, F_k ~ k^{-3}. We propose freezing as a practical mechanism for controlling the gel size.Comment: 4 pages, 3 figure

    How to Choose a Champion

    Full text link
    League competition is investigated using random processes and scaling techniques. In our model, a weak team can upset a strong team with a fixed probability. Teams play an equal number of head-to-head matches and the team with the largest number of wins is declared to be the champion. The total number of games needed for the best team to win the championship with high certainty, T, grows as the cube of the number of teams, N, i.e., T ~ N^3. This number can be substantially reduced using preliminary rounds where teams play a small number of games and subsequently, only the top teams advance to the next round. When there are k rounds, the total number of games needed for the best team to emerge as champion, T_k, scales as follows, T_k ~N^(\gamma_k) with gamma_k=1/[1-(2/3)^(k+1)]. For example, gamma_k=9/5,27/19,81/65 for k=1,2,3. These results suggest an algorithm for how to infer the best team using a schedule that is linear in N. We conclude that league format is an ineffective method of determining the best team, and that sequential elimination from the bottom up is fair and efficient.Comment: 6 pages, 3 figure
    • …
    corecore