38 research outputs found

    Development of Optimized Phenomic Predictors for Efficient Plant Breeding Decisions Using Phenomic-Assisted Selection in Soybean

    Get PDF
    The rate of advancement made in phenomic-assisted breeding methodologies has lagged those of genomic-assisted techniques, which is now a critical component of mainstream cultivar development pipelines. However, advancements made in phenotyping technologies have empowered plant scientists with affordable high-dimensional datasets to optimize the operational efficiencies of breeding programs. Phenomic and seed yield data was collected across six environments for a panel of 292 soybean accessions with varying genetic improvements. Random forest, a machine learning (ML) algorithm, was used to map complex relationships between phenomic traits and seed yield and prediction performance assessed using two cross-validation (CV) scenarios consistent with breeding challenges. To develop a prescriptive sensor package for future high-throughput phenotyping deployment to meet breeding objectives, feature importance in tandem with a genetic algorithm (GA) technique allowed selection of a subset of phenotypic traits, specifically optimal wavebands. The results illuminated the capability of fusing ML and optimization techniques to identify a suite of in-season phenomic traits that will allow breeding programs to decrease the dependence on resource-intensive end-season phenotyping (e.g., seed yield harvest). While we illustrate with soybean, this study establishes a template for deploying multitrait phenomic prediction that is easily amendable to any crop species and any breeding objective

    Explaining hyperspectral imaging based plant disease identification: 3D CNN and saliency maps

    Get PDF
    Our overarching goal is to develop an accurate and explainable model for plant disease identification using hyperspectral data. Charcoal rot is a soil borne fungal disease that affects the yield of soybean crops worldwide. Hyperspectral images were captured at 240 different wavelengths in the range of 383 - 1032 nm. We developed a 3D Convolutional Neural Network model for soybean charcoal rot disease identification. Our model has classification accuracy of 95.73\% and an infected class F1 score of 0.87. We infer the trained model using saliency map and visualize the most sensitive pixel locations that enable classification. The sensitivity of individual wavelengths for classification was also determined using the saliency map visualization. We identify the most sensitive wavelength as 733 nm using the saliency map visualization. Since the most sensitive wavelength is in the Near Infrared Region(700 - 1000 nm) of the electromagnetic spectrum, which is also the commonly used spectrum region for determining the vegetation health of the plant, we were more confident in the predictions using our model

    Challenges and Opportunities in Machine-Augmented Plant Stress Phenotyping

    Get PDF
    Plant stress phenotyping is essential to select stress-resistant varieties and develop better stress-management strategies. Standardization of visual assessments and deployment of imaging techniques have improved the accuracy and reliability of stress assessment in comparison with unaided visual measurement. The growing capabilities of machine learning (ML) methods in conjunction with image-based phenotyping can extract new insights from curated, annotated, and high-dimensional datasets across varied crops and stresses. We propose an overarching strategy for utilizing ML techniques that methodically enables the application of plant stress phenotyping at multiple scales across different types of stresses, program goals, and environments

    Plant disease identification using explainable 3D deep learning on hyperspectral images

    Get PDF
    Background Hyperspectral imaging is emerging as a promising approach for plant disease identification. The large and possibly redundant information contained in hyperspectral data cubes makes deep learning based identification of plant diseases a natural fit. Here, we deploy a novel 3D deep convolutional neural network (DCNN) that directly assimilates the hyperspectral data. Furthermore, we interrogate the learnt model to produce physiologically meaningful explanations. We focus on an economically important disease, charcoal rot, which is a soil borne fungal disease that affects the yield of soybean crops worldwide. Results Based on hyperspectral imaging of inoculated and mock-inoculated stem images, our 3D DCNN has a classification accuracy of 95.73% and an infected class F1 score of 0.87. Using the concept of a saliency map, we visualize the most sensitive pixel locations, and show that the spatial regions with visible disease symptoms are overwhelmingly chosen by the model for classification. We also find that the most sensitive wavelengths used by the model for classification are in the near infrared region (NIR), which is also the commonly used spectral range for determining the vegetative health of a plant. Conclusion The use of an explainable deep learning model not only provides high accuracy, but also provides physiological insight into model predictions, thus generating confidence in model predictions. These explained predictions lend themselves for eventual use in precision agriculture and research application using automated phenotyping platforms

    Cyber-Agricultural Systems for Crop Breeding and Sustainable Production

    Get PDF
    The Cyber-Agricultural System (CAS) Represents an overarching Framework of Agriculture that Leverages Recent Advances in Ubiquitous Sensing, Artificial Intelligence, Smart Actuators, and Scalable Cyberinfrastructure (CI) in Both Breeding and Production Agriculture. We Discuss the Recent Progress and Perspective of the Three Fundamental Components of CAS – Sensing, Modeling, and Actuation – and the Emerging Concept of Agricultural Digital Twins (DTs). We Also Discuss How Scalable CI is Becoming a Key Enabler of Smart Agriculture. in This Review We Shed Light on the Significance of CAS in Revolutionizing Crop Breeding and Production by Enhancing Efficiency, Productivity, Sustainability, and Resilience to Changing Climate. Finally, We Identify Underexplored and Promising Future Directions for CAS Research and Development
    corecore