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Special issue: 21st century tools in plant science

Feature Review

Cyber-agricultural systems for crop breeding
and sustainable production

Soumik Sarkar ,1,2,* Baskar Ganapathysubramanian,1,2 Arti Singh,4 Fateme Fotouhi,1,2

Soumyashree Kar,5 Koushik Nagasubramanian,3 Girish Chowdhary,6 Sajal K. Das,7 George Kantor,8

Adarsh Krishnamurthy,1 Nirav Merchant,9 and Asheesh K. Singh4,*

The cyber-agricultural system (CAS) represents an overarching framework of
agriculture that leverages recent advances in ubiquitous sensing, artificial intelli-
gence, smart actuators, and scalable cyberinfrastructure (CI) in both breeding
and production agriculture. We discuss the recent progress and perspective of
the three fundamental components of CAS – sensing, modeling, and actuation –

and the emerging concept of agricultural digital twins (DTs). We also discuss
how scalable CI is becoming a key enabler of smart agriculture. In this review
we shed light on the significance of CAS in revolutionizing crop breeding and pro-
duction by enhancing efficiency, productivity, sustainability, and resilience to
changing climate. Finally, we identify underexplored and promising future direc-
tions for CAS research and development.

Agricultural cyber-physical systems
Cyber-physical systems (CPSs; see Glossary) are natural or human-engineered systems that
deeply integrate computation (cyber) and physical processes. In a CPS, the physical space is the
source of information, and the cyberspace uses the generated information to make decisions
which are then implemented back into the physical space [1]. In addition to memory, computa-
tion, and communication constraints, the information processing and control algorithms in the
cyberspace also consider the aspects of physical constraints such as time, energy, and safety.
A typical CPS comprises three modules, namely sensing, modeling, and actuation, that form
a closed-loop system that leverages the three functional pillars – communication, computation,
and control (Figure 1A, Key figure).

In a CPS, the sensing devices 'sense' or collect specific information from the physical system or
environment that is being monitored and controlled. The sensed data are either processed
in situ or transmitted through communication channels to the servers for storage, further
processing, and analysis. Data analysis often involves cloud computing, which not only offers
cost-effectiveness and flexibility but also demonstrates resource elasticity to allow dynamic
allocation and scaling of computing resources based on demand. The sensing module is
followed by the modeling module which utilizes decision-making algorithms such as machine
learning (ML)models to extract actionable information from the data and construct computa-
tional models. These models enable reasoning and control of the underlying system, thus
allowing predictive analytics, anomaly detection, and optimization. Finally, the control and
actuation module regulates the CPS to achieve the desired performance safely and efficiently.
Although a CPS can be a monolithic system such as an autonomous vehicle, it can also be
a distributed system (e.g., an electric power grid) through which many subsystems are
connected via a communication network [2,3].

Highlights
The cyber-agricultural system (CAS) inte-
grates cybersystems with the physical
world of agriculture via sensing, model-
ing, and actuation, and leverages the
three pillars of functional cyber-physical
systems (CPSs): computation, control,
and communication:

Advances in computation (i.e., ubiqui-
tous, multimodal sensing, modeling/
reasoning enabled by complex com-
putation capabilities, and off-the-
shelf deep learning models) have
opened up numerous opportunities
in CAS.

Progress in control/actuation is charac-
terized by advanced agricultural ma-
chinery and the rise of agricultural
robotics (e.g., dexterous manipulation
and harvesting, interactive sensing, pre-
cision spraying, mechanical operations,
and weed culling).

Advanced communication is enabling
sensors, actuators, and platforms to
coordinate and collaborate using internet
of things (IoT) principles/tools.
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In this age of Industry 4.0 [4], examples of real-world CPS applications can be found in every
sector – from smart cities, smart power grids, autonomous vehicles, and intelligent transportation
systems to advancedmanufacturing and industrial control systems, and robotic systems. Exactly
as in all these sectors, the CPS paradigm is poised to fundamentally change agriculture, making it

Key figure

Overview of cyber-agricultural systems (CASs)

TrendsTrends inin PlantPlant ScienceScience

Figure 1. (A) Cyber-physical systems (CPSs) are engineered systems with deep integration between the physical and the
cyberspace. The three technical modules of CPS – sensing, modeling, and actuation – leverage the three functional pillars
– communication, computation, and control. (B) The future vision of CAS – an individualized plant management paradigm
that senses and models up to basal individual plants and organs and applies treatments at the plant level rather than the
field level by replacing heavy machinery with multiple small, lightweight units. (C) The CAS vision to transform conventional
agriculture into a highly sustainable system by reducing the disadvantages of widespread chemical usage and significant
capital input required by conventional large-scale farming, for example leading to chemical runoff and soil compaction.
Advanced automation improves the abilities of farmers to manage their operations by reducing work stress, improving
accuracy and precision, reducing physical strain, and minimizing safety concerns.
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significantly more efficient, profitable, sustainable, and safe. The objective of this review is to present
the significance of CPS in plant agriculture. The vision of agricultural CPS or cyber-agricultural
systems (CASs), as illustrated in Figure 1B, is already showing immense possibilities by leveraging
the power of advanced sensing, artificial intelligence (AI), ML, computational modeling, robotics,
wireless communication, and scalable cyberinfrastructure (CI).

For example, in the case of US agriculture, CAS has the ability to alter the current paradigm of large
farms (∼70% of US farmland is in holdings of >500 acres) that are characterized by large machinery
and a large swath of chemical applications that have increased input costs [5,6]. Conventional big
agricultural practices have helped to improve agricultural outputs but have also produced unintended
negative consequences that affect farm economic health and environmental sustainability [7,8], espe-
cially when combating plant pathogens, weeds, and insects that reduce US crop yields. For example,
US agriculture loses US$60.66 per acre due to soybean diseases [9], and global estimates suggest
21.4% yield loss [10]. Large farms counteract these stressors by large-scale and frequent application
of chemicals such as fertilizers, pesticides, and herbicides [11]. However, this increased chemical ap-
plication directly affects run-off, which impacts on water quality across all watershed scales, including
the oceans [12]. Large-scale chemical applications also deteriorate the quality of soil and impact on
the food chain; overuse of chemicals results in chemical resistance with cascading negative conse-
quences [13]. The vision of CAS can alleviate many of these challenges by achieving ultra-precision
agriculture with integration of improved sustainability, profitability, and technology, as shown in
Figure 1C. It is worth noting that the principles of CAS have been previously applied to crop improve-
ment [14] and protection, encompassing sensing (e.g., phenotyping), modeling (e.g., breeding
methodologies), and actuation (e.g., selection decisions and farm management). However, with ad-
vances in sensing, communication, data management, AI, and robotics technologies, this process
has becomemore efficient and intelligent in recent times. Specifically, to address crop breeding prob-
lems, efficient sensing, monitoring, analysis, and characterization of plant traits, known as phenomics
or plant phenotyping, is crucial. Several research questions pertaining to breeding and phenomics are
illustrated in [15].

Although the notion of precision agriculture has been demonstrated and adopted in recent years to
some extent, the framework of CAS can push the boundary further. It can enable an individualized
plant management paradigm (enabled by individualized sensing, individualized modeling, and
individualized actuation, as illustrated in Figure 1B) that applies treatments (i.e., actuation) at the
plant level rather than the field level by replacing heavy machinery with multiple small, lightweight
platforms [4]. We refer to this individualized CAS paradigm as ultra-precision agriculture because
it offers greater flexibility of scale (i.e., scale-agnostic, equally effective for small and large fields),
higher functionality (more effective management and outcomes), increased resilience (e.g., ability
to adapt to changing climate), greater profitability (e.g., reduced costs of operations), enhanced
autonomy, and reduced soil compaction by utilizing small and lightweight platforms. For example,
the authors of [16] describe a CAS framework with a monitoring, managing, and adapting (MMA)
approach. They also discuss how connectivity is ensured among the edge computing devices
to perform cloud computing and dissemination of real-time or near real-time information in produc-
tion agriculture. In summary, the concept of CAS lies at the intersection of precision agriculture,
digital agriculture, and smart agriculture that can address various efficiency, sustainability,
and resiliency issues faced by current agricultural practices.

In the following sections we discuss the three fundamental components (sensing, modeling, and
actuation) of CAS (Figure 2 for a conceptual illustration of these three components), followed by a
brief discussion of agricultural digital twins (DTs), a recently emerging concept in the context of
CAS. Finally, we provide a discussion on CI, a key enabler of the CAS paradigm.

Glossary
Actuation: translating the decisions
and actions of a control system into
physical actions by controlling the
physical environment via actuators.
Artificial intelligence (AI): a branch of
computer science that aims to build
intelligent machines to perform tasks
similar to intelligent beings.
Augmented reality (AR): a technology
that overlays digital information onto the
real world interactively, creating a mixed
reality experience that enhances the
user's perception of their surroundings.
Cloud computing: allows users to
access computer resources on-demand
through the internet, using a network of
remote servers for a variety of services
such as data management, storage,
computing, and tool development.
Computer vision (CV): a field of AI that
enables computers to 'see' and interpret
visual data.
Convolutional neural network
(CNN): a class of deep neural networks
designed to automatically analyze and
extract higher-value information from
visual data.
Cyber-agricultural systems (CASs):
an agricultural framework that leverages
the power of advanced sensing, artificial
intelligence, machine learning,
computational modeling, robotics,
wireless communication, and scalableCI
to optimize agricultural processes,
enhance productivity, sustainability, and
resilience in a connected and digital
environment.
Cyberinfrastructure (CI): a
technological infrastructure that
supports advanced data acquisition,
data storage, data management, data
integration, data exchange and sharing,
data analytics, data visualization, and
other computing and information
processing services.
Cyber-physical systems (CPSs):
engineered systems that are created
from the continuous integration of
computation and physical components.
CPSs involve close integration of
different elements such as computing
devices, control and actuation systems,
networking infrastructure, and sensors.
Digital agriculture: a farm strategy
that involves seamless integration of
digital technologies to improve
agricultural production.
Digital twins (DTs): computer-
generated models designed to precisely
reflect the state and behavior of an
intended or actual physical system for
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simulation, system integration, testing,
performance monitoring, control, and
maintenance.
Edge computing: involves deploying
small, low-power computing (edge)
devices at the edge of the network, close
to the sensors, devices, and other
sources of data.
Fog computing: enhances the
capabilities of cloud computing to the
network edge, enabling data processing
and storage in close proximity to the
data source.
High-throughput phenotyping
(HTP): a rapid, accurate, and non-
destructive approach to measure and
analyze phenotypic traits using
automated technologies.
Industry 4.0: the fourth industrial
revolution involves the integration of
technologies such as IoT, AI, cloud
computing, and CPSs to create a smart,
and connected industry.
Internet of things (IoT): a network of
physical devices embedded with
sensors and connectivity that allow them
to interact with the environment over the
internet.
Machine learning (ML): involves
developing algorithms and models that
empower computers to learn from data
and make predictions/decisions without
the need for explicit programming.
Modeling: creating mathematical
models that capture the behavior of a
physical system, that are used for
simulation, optimization, and decision-
making.
Precision agriculture: a farm strategy
that accounts for spatial and temporal
variability through the use of technology
for increased precision and timely
management to improve sustainable
agricultural production.
Reinforcement learning (RL): a field
of machine learning in which a
computational agent learns to make
optimal decisions to maximize its
potential benefits in a given environment.
Sensing: collecting data from the
physical world through sensors to
estimate the state of the observed
system via information processing and
analysis.
Smart agriculture: a farm strategy that
involves components of precision and
digital agriculture, particularly intelligent
information gathering and processing,
that enables optimized decision making
for improved profitability, sustainability,
and resiliency in agricultural production.
Virtual reality (VR): a computer-
generated environment that is

TrendsTrends inin PlantPlant ScienceScience

Figure 2. Cyber-agricultural system (CAS) sensing, modeling, and actuationmodules. (A) CAS sensing: advanced
sensing technology of different modalities, leveraging heterogeneous platforms; recent advances in information processing
methods, enabled by computer vision and machine learning, lead to high-throughput phenotyping (HTP) of important
plant traits and stresses. (B) CAS modeling and reasoning: computational modeling at a plant to field to regional scale
involving both domain knowledge and data; computational models are then used to make optimal reasoning, planning,
and control for agricultural decisions. (C) CAS actuation and in-field intelligence. (D) Advanced actuation such as precision
spraying, autonomous scouting robots, and dexterous robotic arms for plant manipulation can realize the great potential
of the CAS framework. (E) Technical challenges in creating robotic cyber-physical systems (CPSs) for agriculture that are
highly dexterous while at the same time are engineered to be scaled to millions of acres of agriculture at low cost.
Abbreviation: Ag, agricultural.
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Sensing and advanced information processing
This section delves into the realm of the sensing element within a CAS, and offers a comprehen-
sive overview of different types of CAS sensors, their measurement capabilities, and advanced
and recent information processing techniques employed for analyzing the sensed data.

High-throughput phenotyping
Among various CAS sensing applications, high-throughput phenotyping (HTP) or phenomics
has recently emerged as one of the most useful frameworks [17]. HTP leverages both state-of-
the-art technologies and analytics to provide a significantly faster and non-invasive alternative
to conventional phenotyping methods. Moreover, HTP helps to explore the nexus between
several forms of 'omics' that together provide a holistic information of plants to better characterize
plant health and performance. Hence, it is extremely useful for making many important crop
breeding decisions [18,19]. HTP of plants use various remote sensing techniques to allow
large-scale non-destructive measurement of plant traits [20]. In addition, for both crop breeding
and production, by employing a diverse array of sensors, both proximal and remote, we can
facilitate envirotyping and effectively measure and characterize physical and environmental
variables. This enables us to model plant–environment relations and unlock the hidden genetic
variations within the latent characteristics [21]. In addition to remote sensing tools, plant pheno-
typing can be carried out using various proximal sensing platforms in which the sensors are not
very far from the objects of interest and are installed on platforms such as handheld, fixed instal-
lations, robots, tractors, and drones [22,23]. These sensors are predominantly imaging devices
(e.g., simple RGB or grayscale cameras, and thermal, multispectral, or hyperspectral cameras)
[24]. By contrast, a variety of handheld sensors and in planta sensors are used to estimate
phenotypes such as plant chlorophyll fluorescence, canopy temperature, leaf area, nitrogen con-
tent, and plant height. Instead of directly enabling HTP, these sensors essentially help to provide
the ground-truth for validating the model-derived phenotypic estimates [23,25]. However, efforts
are ongoing that help to provide a proxy measurement of these traits using digital technologies.

In addition to sensors, CAS also leverages measurements in semi- or high-throughput manner.
For example, plant morphological traits are phenotyped using automated screening systems
[26–29]. CAS ideally comprises a collection of sensors or sensing units to enable organ- to
plant- to canopy-level sensing andmeasurement. Although such applications provide rapid mea-
surements with affordable solutions, they provide limited physiological information, involve com-
plex data reconstruction and extraction methods, and are also limited to specific illumination
requirements besides the effects of spatial heterogeneity (due to changing gradients of environ-
mental factors). The HTP advances have also benefited root trait studies through phenotyping
platforms as well as sensing and imaging technologies [30]. These complex datastreams (spatial
and temporal) require ML- and computer vision (CV)-based advanced information processing
methods that constitute a crucial part of the sensing components in CAS.

Role of computer vision and machine learning
With the rapid rise in deep learning (DL) applications [31], many trait-specific pipelines or architec-
tures have been developed [32–37]. There are numerous examples of the use of image-based
phenotyping aided by computer vision and/or ML to study root traits [38–47], which aid mostly
semi-automated analysis of root morphogeometric parameters, although end-to-end phenotyping
pipelines have been developed [48,49]. Nodule features were studied and counted using a
soybean nodule acquisition pipeline (SNAP) system that combines two convolutional neural
network (CNN) models for nodule segmentation [50]. Similarly, published studies that leverage
ML for phenotyping plant traits are rapidly accumulating. These include plant segmentation
and image analysis to automate the temporal mapping of plant parameters [51], an image

experienced through a headset and
specialized controllers, thus allowing
users to feel fully immersed in and
interact with a digital world.
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segmentation-oriented HTP system for temporal analysis of projected leaf area using distributed
learning to train the CNNmodel [52], a leaf-tracking algorithm formotion estimation from time-lapse
images to compared drought-tolerant and wild-type plants [53], compression of very deep CNN
for easy in-field deployment that allows pixel-wise segmentation of plants into multiple classes
[54], a 3D sensing-based stereo-imaging system to measure plant stem diameter [55], plant
organ-level point cloud segmentation [56], and deep multiview image fusion for yield estimation
and prediction [57], and prescriptive breeding [58,59].

Multimodal data assimilation
In many CAS instances, sensing involves multiple modalities in which a variety of traits are
measured and then leveraged to estimate the derived features. The incorporation of multiple
modalities often adds complexity to the reasoning process, and requires updating the single-
modality models with multimodal measurements to estimate the CAS state variables.
Furthermore, these measurements could be performed at different scales of environmental
conditions and plant physiology that very likely require dealing with degraded sensing
environments. However, the fusion process needs to be task-driven because different
cross-modal features could be more informative for different decision objectives [60,61].
Hence, robust ML approaches will be necessary for feature extraction and fusion of
multiscale, multimodal data to update the models. The schematic of such a framework is
compared to a single modality in Figure 2A. One of the earliest applications of sensor fusion
in this area can be traced to [62] in which plant diseases were detected using a fusion of
hyperspectral images by Kohonen maps. Several other works [63–66] primarily consider
sensor fusion using IR thermography, chlorophyll fluorescence, hyperspectral imagery, light
detection and ranging (LiDAR), among others, for several types of plant disease detection
and vegetation monitoring.

One of the earliest scalable multimodal open-source frameworks, namely the integrated analysis
platform (IAP), handles different image sources and organizes phenotypic data by maintaining the
metadata from the input in the result data [67]. On a smaller field scale, the field scanalyzeri gantry
system is an advanced three-axis sensor-to-plant phenotyping system designed with a rail-
based x axis, customizable widths for the y axis, and precise vertical movement capability in
the z axis, enabling sub-centimeter precision during scheduled measurements. A multimodal
sensor suite and data analysis pipeline for field phenotyping has also been implemented using
unpiloted aircraft systems (UAS) [68–71]. GPhenoVision [72] is another notable multimodal
system, comprising a high-clearance tractor and sensing and electrical systems, that substan-
tially employs image-segmentation and point cloud reconstruction algorithms for derivingmultiple
phenotypic estimates. The modalities of its sensing system include a distributed structure that
integrates environmental sensors, real-time GPS, and multi-imaging sensors such as RGB-D,
thermal, and hyperspectral cameras. Similarly, NU-Spidercam [73] was also proposed as a
large-scale and automated sensing/robotics system that integrates various sensor modules for
field phenotyping. This system enabled the extraction of time-series canopy temperature and
spectral induced fluorescence (SIF) traits. Thus, fundamentally, CAS is a leap towards realizing
large-scale, ultra-precision agriculture and smart agriculture that intricately rely on sensing and
advanced information processing.

Modeling and reasoning
Upon gathering heterogeneous information from multiple CAS sensing units, computational
modeling and reasoning frameworks are necessary to make optimized farm management or
crop breeding decisions. This section highlights some of the key aspects of CAS modeling and
reasoning strategies.
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Computational modeling of crop systems
Crop modeling is a mature field of research that has produced several biophysical process-based
models for various types of decisionmaking. An incomplete list of well-usedmodels includes APSIM
[74], DSSAT [75], andMLCan [76]. However, in the context of CAS, computational modeling frame-
works ideally need to include both data-driven and process-based models for reliable biophysical
characterization of the plants, trait prediction (for instance, yield, phenology, stress response),
and decision support – in both short(er)-term (production application) and longer-term (prescriptive
breeding) applications. Although process-basedmodels are useful, they suffer from crucial deficien-
cies necessitating this complementary (data + process) strategy for CAS applications. Key deficien-
cies include (i) incomplete knowledge of all the mechanisms impacting the quality of the modeled
states, (ii) incorporation of latent variables that are often difficult to directly measure or are only
empirically estimated, making transferability and personalization of process models very challeng-
ing, (iii) numerical and representational 'brittleness' due to mismatch between the length- and
time-scales of parameters input to the submodels, their calibration with averaged properties, and
their subjectivity. These deficiencies reduce the utility of any ensuing management decision and
limit any decision necessarily to a coarse scale.

On the other hand, data-driven approaches have begun to show promise in various cropmodeling
applications. For example, early works in this field relied on utilizing a single data modality for crop
yield prediction [77–80], disease identification [81], and irrigation optimization [82,83]. Even natural
language processing and network theory have been proposed to compute phenotypic descrip-
tions for novel candidate gene prediction [84]. However, with the advent of internet of things
(IoT) devices in data collection from multiple modalities, decision making has distanced itself
from previous single-mode ML approaches. For example, the authors of [85] have shown that
publicly available weather and soil data can be relatively effective in county-level corn yield predic-
tion for the USMidwestern region. Similarly, DLmodels have been developed to integrate genotype
and environmental variables for crop yield prediction [86–88]. Whereas traditional DL models
tend to be 'black box' (i.e., models without clear understanding of the inner workings) in nature,
explainable DL models have been shown to uncover useful insights about important predictors
in yield prediction problems [89]. However, purely data-drivenmodels often fail miserably to provide
meaningful outcomes even slightly outside their training data support. Carefully incorporating bio-
physical knowledgemay alleviate such issueswhile also potentially reducing the need for extremely
large amounts of data for training.

Therefore, several ML-based studies have begun to work towards assimilating data from high-
throughput imaging/sensing platforms to rapidly, precisely, and accurately model plant traits at
different growth stages, and integrate these data with (incomplete) knowledge models to create
flexible, hybrid AI representations. For example, a knowledge-guided ML model for rice growth
simulation has been proposed recently [90]. Similarly, coupling of ML and crop modeling was
shown to improve crop yield prediction in the US Corn Belt [91]. Thus, the availability of hybrid
data–biophysics models has the potential to transform plot-, field-, and region-level models
from ad hoc calibration to a more principled CPS approach [92,93]. However, this remains a
nascent area of research and there is no consensus yet in the community regarding the most
effective ways to integrate knowledge and ML for modeling crop growth and production.

Reasoning frameworks for crop management
With a computational model in place that can simulate crop growth and production under various
environmental conditions, as well as management inputs, reasoning and decision-making tools
can leverage that model to generate optimized crop management prescriptions, as shown in
Figure 2B. There have been several attempts to build such decision-making frameworks in the
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context of CAS. Among various techniques, reinforcement learning (RL)-based frameworks
for planning and supervisory decision making have emerged as a popular choice [94], primarily
driven by the popularity of advanced deep RL tools in various application sectors. Examples
include control crop irrigation [95–97] and crop yield prediction [98]. The objective of an RL
agent is to learn a policy for dictating a sequence of optimal actions that maximize the cumulative
rewards over a particular time horizon [99]. The application of RL (specifically deep RL) in CAS is
an active research area, especially for engineering a proper representation of the environment
states, actions, and rewards.

Ideally, an RL agent should directly interact with the real physical system to arrive at an optimal
policy, but it typically has a very large sample complexity – it needs many iterations of interactions
with the underlying system to obtain an optimal policy. On top of that, during such a training
process, utterly suboptimal actions can be taken by the RL agent that may be completely
unacceptable for an actual crop farm. Therefore, a standard practice is to build reliable simulated
environments (that can leverage the computational models, as described before) to train RL
policies, followed by fine-tuning the policies to effectively transfer them from simulation to real
(Sim2Real) environments. In the RL literature, these simulation platforms are referred to as gym
environments, and these have also started emerging for CAS. For example, CropGym was
proposed as a RL environment for crop management [95].

Actuation and in-field Intelligence
In the CAS setting for crop production, actuation refers to the use of mechanical and electrical
systems to control and automate various processes in farming to optimize agricultural goals
[100]. In plant breeding and crop improvement, actuation refers to decision making following
sensing and modeling to decide the outcome of tested varieties – whether it will be culled or
retained for further testing or release to farmers.

Advanced robotic actuation in CAS
Agricultural robots can be divided into a few categories based on their characteristics. According to
their working environment, agricultural robots are divided into indoor and outdoor robots [101].
Indoor robots are mainly utilized in greenhouses and indoor settings, such as for indoor harvesting,
flower cutting, fruit and vegetable grasping, and greenhouse automation control systems
[102–104]. Outdoor robots such as spraying robots, weeding robots, nursery robots, tractors,
and fruit-harvesting robots [69,105–109], on the other hand, are used in large-scale farmland,
pasture, and other outdoor environments. These include both aerial robots, such as unpiloted
aerial vehicles (UAVs), and ground robots, such as unpiloted ground vehicles (UGVs), based on
their operational domain. In addition, they also can be classified into robots for seeding, planting,
harvesting, weeding, and pesticide application [102,110–112]. Regarding agricultural manage-
ment approaches, actuators can be categorized into soil management robots, field mapping
robots, irrigation management robots, harvesting management robots, and weather tracking
and forecasting platforms [100,113–115]. Moreover, from themechanical point of view, agricultural
robots have an actuation system as the key component which, depending on their specific use, can
be one or a combination of electric, piezoelectric, hydraulic, and pneumatic systems [116–120].

The CAS vision is to have teams of semi- or fully autonomous mobile robots that can provide
avant-garde actuation options to farmers that improve the production efficiency and quality of
agricultural products [121–123]. Such teams can scale from a small group of robots or UAVs
to a large swarm depending on the scale of operation, the size and capability of the platforms,
and cost. Technical and digital advances in crop production, sensing, and phenotyping include
an interest in automating in-field actions using robots and drones (e.g., the 'see and spray'
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technology) [124]. To execute diverse in-field actions, the robot/UAV teams can be composed of
homogeneous (i.e., similar capability, performing similar tasks) and heterogeneous (i.e., different
capability, performing different tasks) platforms. To enable autonomous fleets of robots in agricul-
ture with minimal human intervention, it is imperative to build scalable electrified agricultural
systems and use energy optimally. The authors of [125] perform a cost analysis considering
battery charge and health behavior for autonomous electric field tractors. The works presented
in [126–128] also offer valuable insights into power management, life maximization, and battery
balancing strategies related to agricultural applications. However, further research in this area
will be necessary to realize the potential of electrification in promoting sustainable agriculture,
including power optimization in scalable and connected electric-powered agriculture. For
instance, although teams of mobile robots equipped with plant manipulation systems could help
to alleviate the acute labor shortage in agriculture [129], it is also crucial to consider optimizing
the power management of this robot network for sustained, autonomous operation.

In-field intelligence
ML has greatly enhanced the capabilities of agriculture robots of all categories, particularly those
designed for sensing and actuation. These intelligent robots range from small robots in green-
houses to UAVs and tractors in the outside field, which are equipped with ML algorithms to
analyze vast amounts of data collected by sensors/cameras to identify agricultural data patterns
andmake decisions. For instance, UAVs equippedwith high-resolution cameras and sensors can
be used to monitor crop health and growth patterns, and identify any potential issues such as
pests, diseases, or irrigation problems [22,130–132]. Recently, the use of ML algorithms with
multiple connected drones in agriculture has enhanced field mapping, thus providing a more
comprehensive view of the farmland, which leads to improving the land management practices
[133,134]. Similarly, automatic navigation of tractors using machine vision algorithms (e.g., object
detection, segmentation) enhances accuracy by mapping the crop lines and navigation routes in
real time to improve efficiency in agriculture operations [135–137]. A key challenge in enabling
envisaged CPS for large-scale row-crops is long-duration reliable autonomy in harsh and changing
field environments at low cost. One way to achieve this is to use intelligent software that makes the
most out of cheaper sensors. For example, low-cost LiDARs with inertial sensors and encoders
could enable robust row-following [138,139], and vision sensors can be used to replace LiDAR
sensors which are comparatively more expensive [140]. However, it is relatively challenging to
reduce the cost and effort required for programming robot tasks while still reaching high accuracy
in the perception process to avoid wrong actions in the field.

In addition, an active area of work includes automatic detection of traversable regions through
improved robot mission programming [141–145]. Such intelligent coordination of agricultural
robot teams enables mechanical tasks such as weed removal using planning algorithms
[146–148], speeding of route schedules on the aisles for complex tasks such as harvesting in
vineyards and pruning trees in orchards [105], and dexterity for tasks such as harvesting and
grasping. These tasks require actuation components such as drive systems, controllers, robotic
arms, end-effectors, and environmental perception components such as radar and cameras
with DL-based detection algorithms [149–153]. Figure 2C showcases that agricultural robots
need to be dexterous (to achieve human level performance) but must be able to scale up to
millions of acres of farming. This means that plant manipulation needs to be robust, reliable,
and fast. This is, of course, highly challenging owing to clutter, occlusion, and the soft nature
of fruits and other plant organs. Adding to this is the challenge that the robots must be cost-
effective, precluding the use of expensive industrial rigid arms and expensive sensors. There
is considerable promise in soft-robots [154], but the underlying control and sensing challenges
require further work.
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Digital twins
Building on the three technical modules of a CAS, as described above, the concept of agricultural
DT has recently started to emerge. The notion of a DT brings together the sensing, modeling,
control, and actuation aspects of the CPS under a single conceptual umbrella. DTs have found
extensive utility in engineered systems [155,156] as well as in logistics and supply chains [157].
Plant sciences and agriculture are ripe for the development and deployment of DTs across the
spectrum of applications from basic research [158] to breeding [159] to precision agriculture
[160,161] to policy [162]. The basic idea of a DT in agriculture is a data and software framework
that serves as a digital replica of the agricultural physical system [163]. That is, the DT mirrors the
behavior of the physical object over its lifetime. This includes mimicking the physiological state,
growth, and development of a plant (in case of a plant DT), or of a field (in case of a field DT),
as illustrated in Figure 3A. Building the DT starts with identifying the states that are most impor-
tant, the measurements that are being made, and the management decisions (formally, control
inputs). We note that the definition of DTs (i.e., their digital states) will be highly context-specific,
and depend on the key properties of interest and the associated rewards.

As discussed earlier, crop models play a crucial role in understanding plant physiology, growth,
development, and management. However, it is useful to distinguish between such agricultural

TrendsTrends inin PlantPlant ScienceScience

Figure 3. Cyber-agricultural system (CAS) digital twins (DTs). (A) Illustration of plant- and field-level DTs for breeding
and production scales, respectively. (B) Example of remote scouting of soybean plants using virtual reality (VR) and CAS
cyberinfrastructure. (C) Distributed CAS computing framework at the edge, fog, and cloud layers hierarchically.
(D) Conceptual illustration of a CAS with a team of robots working together to maximize productivity and profitability by
using fundamentally more sustainable actuation options, including see-and-spray, mechanical weeding, and cover-crop
planting. Reliable data travel and networking solutions are a key enabler of such a vision.
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simulators (or cropmodels) and a DT [158]. A primary difference is that a DTmust – by definition – be
able to update its digital state continuously (or periodically) using measurements made on its
physical counterpart. This includes both physical state measurements (phenotyping, physiological
measurements, etc.) as well as environmental measurements (soil, weather, and management)
that impact on its state. In addition, the DT (in its various formulations) provides a principled
approach to account for known dynamics (as encoded in a crop model) with unknown dynamics
(as encoded in physical measurements). This is especially important in biological DT because no
complete first-principle models exist (unlike engineered systems where models can completely
describe behavior with no tunable parameters). Finally, a desirable property of a DT is its ability
to be transferable to different scenarios. This is particularly useful to evaluate various what-if
scenarios to identify the best control action. Another exciting technological option for CAS and
DT is augmented reality (AR) and virtual reality (VR) which were earlier proposed for precision
farming [164]. AR and VR can play an important role in sensing, reasoning, and future actuation
applications via remote robotic manipulation. Utilization of AR and VR allows researchers and (in
future) farmers to conduct various experiments and operations (e.g., remote scouting, as illustrated
in Figure 3B) with significantly less effort. For example, through VR simulations, researchers can
gain insights into how robots navigate, interact with crops, and execute specific tasks, thus facili-
tating the identification of potential improvements and optimizations in their behavior. Furthermore,
virtual experiment runs using VR allow researchers to collect valuable data on robot performance,
thereby enabling them to refine algorithms, adjust parameters, and enhance the overall efficiency
and effectiveness of agricultural robots before deploying them in real-world scenarios.

DT concepts have recently been used in a variety of contexts in agriculture. They have been used
across species, with applications to row crops, orchards, viticulture, gardens, and horticulture.
DTs can also be defined, constructed, and deployed at different length scales, and recent studies
have been performed at the organ, plant, field, and farm/greenhouse scales [165–167]. Finally,
DTs can be deployed for a variety of end-goals ranging from monitoring and real-time diagnosis
to maximizing yield and/or profitability [161,168–170], breeding decision support, and autono-
mous field operations. The next goal for research in DT would be to successfully create an
'intelligent digital twin' (IDT) [168], which means a DT that can self-learn and decide what is
best for the farm. ML methods can be used for adding intelligence to DT, as discussed in
[168]. A few more studies have explored IDT, mostly utilizing generative models as the basis of
DTs [171,172]. These intelligent twins can self-learn with different levels of data integration. There-
fore, the integration of ML and large-scale sensing with autonomous systems provides significant
opportunities to build DT for CASs.

Cyberinfrastructure
Although sensing, modeling, and actuation are the technical pillars of a CPS, scalable and robust
CI is a key enabler of such a framework. In this sectionwe discuss some of themajor components
of CAS CI.

Data management
Data management in a CI framework substantially differs from traditional data representations
that are not suitable for large-scale, real-time analysis, visualization, and information dissemina-
tion for complex dynamic phenomena. By contrast, CAS platforms need to offer access to
suitable software and hardware that can handle various data types and scale computations.
This entails having access to a shared data storage system that can efficiently and securely trans-
fer large datasets, connections to the proper computational hardware such as high-memory
computers and virtual machines for analysis, the ability to label and retrieve data using descriptive
metadata, and identity management systems for secure data sharing with reliable entities [173].
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Hence, with rapid development of sensor networks, IoT systems, hardware-accelerated graphic
cards, and computer vision, CI data are distributed in cyberspace [174]. These sensor observa-
tion data are multivariate, space/time-sensitive, and are found in different types, formats, dimen-
sions, sources, and structures [175]. In distributed CAS, different observation sites or nodes
sense/observe different sets of variables, mostly collected at different frequencies, resulting in
streaming of heterogeneous data. Such data require complex data structures for storing, repre-
sentation, and management techniques involving cloud computing infrastructure.

In CAS, the IoT is a vital component because it involves the deployment of IoT devices such as
Raspberry Pi cameras, irrigation sensors, and geographic information systems (GISs) in farms
to gather data from the fields. These data are then transmitted to the server (computer unit) for
further processing and analysis. With a distributed framework, these sensing units hierarchically
operate at the edge, fog computing, and cloud layers. The data feed is ideally scheduled
such that historical field data serve as input iteratively for informed and improved decision making.
In addition, there is the option of smart warehousing, which makes use of these data to improve
post-harvest storage and enable big data-enabled warehousing. This assists farmers in making
decisions about howmuch produce to store and sell [176]. Some instances of data management
systems and CI-enabled consortiums are iRODS [177], IBPii, NEVPiii, and SERNECiv

[173,178,179] that assist with data analysis and sharing.

Computing
Li et al. [174] highlight the difficulties involved in managing multivariate data collected across
modalities from a distributed sensor network, which is commonly observed in CAS. The study
suggests that, to address those challenges and improve online interactive visual analysis,
conventional data integration methods must be revamped to support more efficient, scalable,
and collaborative visual analysis. Hence, multimodal data fusion that has already proved to be
very efficient in improving accuracy and robustness by combining learning over multiple modali-
ties is integral to computing in a CI [180,181].

For computational efficiency, it is imperative to learn from a compressed representative set of the
overall sensor data that can also be converted to human-interpretable actionable insights. These
computations are generally scheduled and performed in a central computing unit or in distributed
units that are connected to the cloud [182,183]. These computations make decisions based on
area-specific knowledge as well as business intelligence. As a result, CAS can also function as a
decision support system (DSS) for users (e.g., farmers). The decisions made can be sent to the
end-users through WiFi-enabled smartphones or computers that act as an interface to enable
the user to control all the activities taking place in the field from their computer or smartphone;
it therefore enables a service platform for the end-user [176].

Edge, fog, and cloud computing
Despite the advantages of IoT, it is challenging to transmit a large amount of sensory data from
agricultural fields to the back-end servers, whether they are in the cloud or in data centers.
Such communication requires significant energy, causes delays in communication, and
generates substantial network traffic. For example, reliable communication between coordinated
robots in an intelligent system is crucial; however, low-range (LoRa) high-bandwidth wireless
connectivity (in the 2.5–5 GHz range) and larger power-demand make it challenging. Figure 3D
depicts an example CPS where multiple robots work together through reliable communication
to enable fundamentally more sustainable actuation for agriculture. There are multiple technology
options for communication, such as 5G and MIoTy [184]. However, in many rural areas, broad-
band technologies such as 5G may not be available. LoRA communication and other low-
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bandwidth options could help, but significant edge computing is required so that only essential
messages need to be exchanged [185]. Another challenge here is in creating reliable predictive
models and keeping their prediction on track using feedback-like mechanisms [186]. Edge
computing refers to the process of locally storing and processing data near end devices or
users [187,188]. This reduces the energy consumption and communication delay required to
transmit the collected data. Recent advances in compression/decompression methods using
ML models have further helped to decrease the data size at edge/local devices [189–192]. How-
ever, edge devices (e.g., sensors) have limited resources and cannot efficiently execute DL. To
address this, a recent approach has been proposed that utilizes efficient online computation off-
loading through deep RL for extensive mobile edge computing [193].

To address the computing limitation of edge devices, an edge–fog architecture is introduced to
process IoT data in an efficient way while avoiding the communication delay that occurs in
cloud computing [194]. As argued in [195], the three layers (edge, fog, and cloud) architecture
in smart agriculture, as shown in Figure 3C, would reduce energy consumption, network traffic,
and communication delay. Moreover, a state-of-the-art survey on fog computing for IoT was
proposed in [196]. Fog devices (e.g., laptops or low- end computing machines) are usually
equipped with more resources than edge devices, and are mostly located at closer communica-
tion distance than the cloud. DLwith light configuration (few layers and neurons) may be executed
efficiently in the fog. Specifically, energy-aware fog-based frameworks were recently studied for
mobile crowdsensing, where farmers use smartphones to supply high-quality information
[197,198]. However, edge computing is not a replacement for the cloud, and thus the cloud
services are still preferable for performing heavy computational tasks in IoT-based farming; for
instance, big data analysis and execution of resource-intensive DL models (e.g., ResNet [199])
for real-time crop monitoring.

Data travel and networking
The objective of any CPS is to connect embedded systems with the help of worldwide networks
and to enable communication as well as back-coupling between the digital and the physical
worlds [200]. Ideally, a CPS comprises several interconnected layers that facilitate secure data
travel (between the end users and the cloud) from the physical layer to the IoT layer. The data
captured in the IoT layer is moved to the cyber layer, which is enabled with a DT that allows the
experts to study system behavior virtually and observe the analytical outcomes by iteratively
predicting, modeling, analyzing, and actuating on the cyber platform [201]. The cyber layer con-
nects the edge tier to the data analytics platform tier, followed by the enterprise layer that
accounts for business intelligence and decision making. Finally, the cloud tier stores and handles
the big data and connects to the application tier forming the service platform for the farmers/
stakeholders [176]. However, this data travel requires a cybersecurity strategy to guarantee
that sensitive information is only accessed by authenticated entities [202,203]. In addition, meet-
ing the time requirements for such data transfer between and within the layers is extremely crucial
[200]. Hence, the identification and tracking technologies, and the networking and communica-
tion technologies, play a key role in making the whole integration functional. The most common
identification and tracking technologies include radio-frequency identification devices (RFIDs)
and intelligent sensors [204]. For interconnecting the sensors and actuators, the prevalent wire-
less network protocols used in CPS typically include Bluetooth, WirelessHART, ZigBee, and WiFi
[203]. With a goal to provide internet access to rural areas, existing solutions utilize either short-
range technologies (e.g., WiFi, and Bluetooth) or long-range solutions (e.g., 3G/4G/5G, WiMax,
LTE/LTE-A) or a combination thereof. The long-range wide area network (LoRaWAN) has recently
been suggested as a solution to meet the needs of providing connectivity in agricultural environ-
ments owing to its scalable network architecture and straightforward access method, thus
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enabling long-range communication with low energy consumption [205]. Although LoRaWAN
provides promising applications in the agricultural domain, it’s very limited data rates prohibit
the adoption of many broadband solutions in a rural context. As an example, transferring large
hyperspectral images collected by a drone would be infeasible with a low data rate technology
such as LoRaWAN [206,207].

Concluding remarks and future perspectives
Bringing CPS concepts to agriculture, both for crop breeding and production, has enormous
potential to enhance productivity, profitability, and resiliency while lowering the environmental
footprint. This review article presents the current state of CAS development as well as the trends
of innovation that will determine the near and distant future of CAS. CAS tools are at various levels
of technology readiness and market adoption. Given the enormous uncertainties stemming from
many confounding factors such as disruptive innovations (e.g., generative AI), manufacturing and
supply chain issues, market economy, labor market situation, and environmental regulations, it is
difficult to forecast precise future trends and timelines. However, we provide a broad discussion
here based on our views and understanding (also see Outstanding questions). We summarize
the main takeaways from the paper in Box 1 and suggest some best practices for future research
in Box 2.

In the context of CAS sensing tools, many high-throughput phenotyping tools are available and
deployable today. Although the commercially available tools primarily enable extraction of
relatively simpler traits (e.g., plant height, canopy volume, detection and counting of fruits, and
estimation of yield), capabilities to extract more complex traits (e.g., identification, classification,
and quantification of biotic and abiotic stresses, pests) will also be starting to roll out soon.
Research and development in this area can specifically benefit from data sharing and open inno-
vations. Although the CAS community has made many datasets publicly available as bench-
marks, data sharing needs to be further incentivized to trigger widespread open innovation.
Widely collected citizen science data can also be extremely useful in this regard [208]. Data anno-
tation (especially by experts) is still a major bottleneck to train ML models in this regard. However,
the rise of foundation models in ML is helping to address this issue at least partially [209].

Outstanding questions
How can we ensure a high degree of
reliability of a CAS 'in the wild' that
would guarantee performance under
environmental uncertainties, system
faults, and natural edge cases?

How can we build andmaintain reliable
4D (3D + time) in-field (as opposed to
controlled environment) DT models
from plant to plot to field scale?

How can we achieve the 'economy of
scale' for advanced CAS sensing and
actuation solutions (i.e., to enable
widespread adoption and reduce
costs as well as barriers to entry)?

How can we build fully autonomous
(i.e., level 5 autonomy which does not
require human attention) platforms for
CAS operations?

Box 1. Key take-away points for practitioners

CAS tools are at various levels of technology readiness. For example, many high- throughput phenotyping tools are
available and deployable today; AI-driven farm management decision support tools will also be starting to roll out soon.
However, fully autonomous robots running a farm may not become a reality immediately.

Designing a specific CAS framework, such as an appropriate choice of platform – drones, ground robots, traditional
machinery, or static sensors – depends on the objective (e.g., stress identification andmitigation, or yield estimation), scale
of application, cost, and resource availability.

A scalable cyberinfrastructure solution that is the backbone of a CAS should range from edge to fog to cloud computing.

Advanced wireless communication technology is another key enabler of a CAS, and improving rural connectivity will act as
a catalyst for accelerated development and deployment of CAS technologies in farms.

Remark: despite excellent progress in the area of CAS research over the past few years, significant effort will still be
required for a transition of many of these tools into practice. Although some CAS tools will be more readily adopted by
the farming and research community, other aspects will need a more drastic overhaul of the system, and hence may take
longer for market penetration. Different parts of the world may also see different trajectories for adoption, depending on
various factors such as economic status, labor market situation, and environmental regulations. Therefore, it is imperative
for CAS researchers to continuously consider any adoption issues alongside the challenges and advances of science,
engineering, and technology.
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AI-driven farm management decision support tools are next in line to be deployed commercially.
Within the next 5–10 years, breeders and producers should have many technology options to
turn their data into decisions using CASmodeling and reasoning tools for making optimal choices
in choosing seeds, deciding planting dates, farm management (e.g., irrigation, applying fertilizers
and pesticides) and scheduling harvest. In many cases, these products may be available as
'software as service', thus lowering the barrier to adoption by the farming community. However,
the cost of sensing infrastructure and data privacy are common bottlenecks in this regard.
Although 'economy of scale' can alleviate the cost issue in future, the research community and
the AgTech industry need to engage with the farming community extensively to raise awareness
about CAS capabilities for technology adoption.

In terms of actuation, design modification and retrofitting of large equipment (e.g., autonomous
tractors) for increased levels of automation have already been commercialized. However, the
vision of fleets of autonomous robots and drones running a farm with little human supervision
may not become a reality immediately. Although there have been several successful proof-of-
concept demonstrations of autonomous field robots performing several tasks such as planting,
chemical spraying, and harvesting, fine manipulation and individual plant-level actuation remain
challenging. In addition, the technology needs to be hardened further to handle the harsh agricul-
tural environment. Apart from the technical issues, various social (e.g., uncertainty about the
future of work and employment), legal (e.g., regulation, liability, certification), and economic
(e.g., manufacturing cost) issues also remain in this regard. However, these problems can be
very different in different parts of the world depending on the scale of farming, the type of
crops, climate, communication infrastructure, economy, and cost of labor.

Finally, deployment of CPS tools at scale relies heavily on communication and computation
infrastructure. However, high-quality broadband connectivity may still not be available in many
rural areas, and this poses a significant challenge in deploying advanced CAS solutions in rural
agriculture. Hence, the CAS research community has been focusing on developing edge com-
puting solutions to reduce the need for extensive communication. With recent advances in
both hardware and software for edge computing, hybrid edge–cloud solutions are becoming
increasingly feasible and cost-effective for deploying CAS solutions.
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Box 2. Best practices for using CAS tools

Multimodal, multiscale (spatial and spectral) data collection is crucial for greater effectiveness of CAS tools.

Hybrid modeling approaches that can seamlessly combine process models and data-driven models are more robust for
in-field applications.

A scale-agnostic approach to actuation using collaborative teams of (autonomous) heterogeneous platforms will be a
more sustainable solution for future agriculture with a low entry barrier.

Leveraging advanced data warehousing and machine learning operations (MLOps) to manage data and generate insights
is an important design choice that streamlines the development, deployment, and maintenance of CAS tools.
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