36 research outputs found

    Microlensing Results Challenge the Core Accretion Runaway Growth Scenario for Gas Giants

    Full text link
    We compare the planet-to-star mass-ratio distribution measured by gravitational microlensing to core accretion theory predictions from population synthesis models. The core accretion theory's runaway gas accretion process predicts a dearth of intermediate-mass giant planets that is not seen in the microlensing results. In particular, the models predict ∌10 ×\sim10\,\times fewer planets at mass ratios of 10−4≀q≀4×10−410^{-4} \leq q \leq 4 \times 10^{-4} than inferred from microlensing observations. This tension implies that gas giant formation may involve processes that have hitherto been overlooked by existing core accretion models or that the planet-forming environment varies considerably as a function of host-star mass. Variation from the usual assumptions for the protoplanetary disk viscosity and thickness could reduce this discrepancy, but such changes might conflict with microlensing results at larger or smaller mass ratios, or with other observations. The resolution of this discrepancy may have important implications for planetary habitability because it has been suggested that the runaway gas accretion process may have triggered the delivery of water to our inner solar system. So, an understanding of giant planet formation may help us to determine the occurrence rate of habitable planets.Comment: 12 pages, 2 figures, 1 table, accepted for publication in ApJ

    A Planetary Microlensing Event with an Unusually Red Source Star: MOA-2011-BLG-291

    Full text link
    We present the analysis of planetary microlensing event MOA-2011-BLG-291, which has a mass ratio of q=(3.8±0.7)×10−4q=(3.8\pm0.7)\times10^{-4} and a source star that is redder (or brighter) than the bulge main sequence. This event is located at a low Galactic latitude in the survey area that is currently planned for NASA's WFIRST exoplanet microlensing survey. This unusual color for a microlensed source star implies that we cannot assume that the source star is in the Galactic bulge. The favored interpretation is that the source star is a lower main sequence star at a distance of DS=4.9±1.3 D_S=4.9\pm1.3\,kpc in the Galactic disk. However, the source could also be a turn-off star on the far side of the bulge or a sub-giant in the far side of the Galactic disk if it experiences significantly more reddening than the bulge red clump stars. However, these possibilities have only a small effect on our mass estimates for the host star and planet. We find host star and planet masses of Mhost=0.15−0.10+0.27M⊙M_{\rm host} =0.15^{+0.27}_{-0.10}M_\odot and mp=18−12+34M⊕m_p=18^{+34}_{-12}M_\oplus from a Bayesian analysis with a standard Galactic model under the assumption that the planet hosting probability does not depend on the host mass or distance. However, if we attempt to measure the host and planet masses with host star brightness measurements from high angular resolution follow-up imaging, the implied masses will be sensitive to the host star distance. The WFIRST exoplanet microlensing survey is expected to use this method to determine the masses for many of the planetary systems that it discovers, so this issue has important design implications for the WFIRST exoplanet microlensing survey

    Spectroscopic Mass and Host-star Metallicity Measurements for Newly Discovered Microlensing Planet OGLE-2018-BLG-0740Lb

    Full text link
    We report the discovery of the microlensing planet OGLE-2018-BLG-0740Lb. The planet is detected with a very strong signal of Δχ2∌4630\Delta\chi^2\sim 4630, but the interpretation of the signal suffers from two types of degeneracies. One type is caused by the previously known close/wide degeneracy, and the other is caused by an ambiguity between two solutions, in which one solution requires to incorporate finite-source effects, while the other solution is consistent with a point-source interpretation. Although difficult to be firmly resolved based on only the photometric data, the degeneracy is resolved in strong favor of the point-source solution with the additional external information obtained from astrometric and spectroscopic observations. The small astrometric offset between the source and baseline object supports that the blend is the lens and this interpretation is further secured by the consistency of the spectroscopic distance estimate of the blend with the lensing parameters of the point-source solution. The estimated mass of the host is 1.0±0.1 M⊙1.0\pm 0.1~M_\odot and the mass of the planet is 4.5±0.6 MJ4.5\pm 0.6~M_{\rm J} (close solution) or 4.8±0.6 MJ4.8\pm 0.6~M_{\rm J} (wide solution) and the lens is located at a distance of 3.2±0.53.2\pm 0.5~kpc. The bright nature of the lens, with I∌17.1I\sim 17.1 (V∌18.2V\sim 18.2), combined with its dominance of the observed flux suggest that radial-velocity (RV) follow-up observations of the lens can be done using high-resolution spectrometers mounted on large telescopes, e.g., VLT/ESPRESSO, and this can potentially not only measure the period and eccentricity of the planet but also probe for close-in planets. We estimate that the expected RV amplitude would be ∌60sin⁥i m s−1\sim 60\sin i ~{\rm m~s}^{-1}.Comment: 12 pages, 11 figures, 4 table

    Candidate Brown-dwarf Microlensing Events with Very Short Timescales and Small Angular Einstein Radii

    Get PDF
    Short-timescale microlensing events are likely to be produced by substellar brown dwarfs (BDs), but it is difficult to securely identify BD lenses based on only event timescales t_E because short-timescale events can also be produced by stellar lenses with high relative lens-source proper motions. In this paper, we report three strong candidate BD-lens events found from the search for lensing events not only with short timescales (t_E â‰Č 6 days) but also with very small angular Einstein radii (Ξ_E â‰Č 0.05 mas) among the events that have been found in the 2016–2019 observing seasons. These events include MOA-2017-BLG-147, MOA-2017-BLG-241, and MOA-2019-BLG-256, in which the first two events are produced by single lenses and the last event is produced by a binary lens. From the Monte Carlo simulations of Galactic events conducted with the combined t_E and Ξ_E constraint, it is estimated that the lens masses of the individual events are 0.051^(+0.100)_(−0.027) M⊙, 0.044^(+0.090)_(−0.023) M⊙, and 0.046^(+0.067)_(−0.023) M⊙/0.038^(+0.056)_(−0.019) M⊙ and the probability of the lens mass smaller than the lower limit of stars is ~80% for all events. We point out that routine lens mass measurements of short-timescale lensing events require survey-mode space-based observations

    OGLE-2018-BLG-0022: First Prediction of an Astrometric Microlensing Signal from a Photometric Microlensing Event

    Full text link
    In this work, we present the analysis of the binary microlensing event OGLE-2018-BLG-0022 that is detected toward the Galactic bulge field. The dense and continuous coverage with the high-quality photometry data from ground-based observations combined with the space-based {\it Spitzer} observations of this long time-scale event enables us to uniquely determine the masses M1=0.40±0.05 M⊙M_1=0.40 \pm 0.05~M_\odot and M2=0.13±0.01 M⊙M_2=0.13\pm 0.01~M_\odot of the individual lens components. Because the lens-source relative parallax and the vector lens-source relative proper motion are unambiguously determined, we can likewise unambiguously predict the astrometric offset between the light centroid of the magnified images (as observed by the {\it Gaia} satellite) and the true position of the source. This prediction can be tested when the individual-epoch {\it Gaia} astrometric measurements are released.Comment: 10 pages, 10 figures, 4 table

    SpitzerSpitzer Parallax of OGLE-2018-BLG-0596: A Low-mass-ratio Planet around an M-dwarf

    Full text link
    We report the discovery of a SpitzerSpitzer microlensing planet OGLE-2018-BLG-0596Lb, with preferred planet-host mass ratio q∌2×10−4q \sim 2\times10^{-4}. The planetary signal, which is characterized by a short (∌1 day)(\sim 1~{\rm day}) "bump" on the rising side of the lensing light curve, was densely covered by ground-based surveys. We find that the signal can be explained by a bright source that fully envelops the planetary caustic, i.e., a "Hollywood" geometry. Combined with the source proper motion measured from GaiaGaia, the SpitzerSpitzer satellite parallax measurement makes it possible to precisely constrain the lens physical parameters. The preferred solution, in which the planet perturbs the minor image due to lensing by the host, yields a Uranus-mass planet with a mass of Mp=13.9±1.6 M⊕M_{\rm p} = 13.9\pm1.6~M_{\oplus} orbiting a mid M-dwarf with a mass of Mh=0.23±0.03 M⊙M_{\rm h} = 0.23\pm0.03~M_{\odot}. There is also a second possible solution that is substantially disfavored but cannot be ruled out, for which the planet perturbs the major image. The latter solution yields Mp=1.2±0.2 M⊕M_{\rm p} = 1.2\pm0.2~M_{\oplus} and Mh=0.15±0.02 M⊙M_{\rm h} = 0.15\pm0.02~M_{\odot}. By combining the microlensing and GaiaGaia data together with a Galactic model, we find in either case that the lens lies on the near side of the Galactic bulge at a distance DL∌6±1 kpcD_{\rm L} \sim 6\pm1~{\rm kpc}. Future adaptive optics observations may decisively resolve the major image/minor image degeneracy.Comment: 34 pages, 8 figures, Submitted to AAS journa

    OGLE-2014-BLG-0962 and a Comparison of Galactic Model Priors to Microlensing Data

    Get PDF
    OGLE-2014-BLG-0962 (OB140962) is a stellar binary microlensing event that was well covered by observations from the Spitzer satellite as well as ground-based surveys. Modeling yields a unique physical solution: a mid-M+M-dwarf binary with M_(prim) = 0.20 ± 0.01 M☉ and M_(sec) = 0.16 ± 0.01 M☉, with projected separation of 2.0 ± 0.3 au. The lens is only D_(LS) = 0.41 ± 0.06 kpc in front of the source, making OB140962 a bulge lens and the most distant Spitzer binary lens to date. In contrast, because the Einstein radius (Ξ_E = 0.143 ± 0.007 mas) is unusually small, a standard Bayesian analysis, conducted in the absence of parallax information, would predict a brown dwarf binary. We compare the results of Bayesian analysis using two commonly used Galactic model priors to the measured values for a set of Spitzer lenses. We find all models tested predict lens properties consistent with the Spitzer data. Furthermore, we illustrate the methodology for probing the Galactic distribution of planets by comparing the cumulative distance distribution of the Spitzer two-body lenses to that of the Spitzer single lenses
    corecore