125 research outputs found

    Wool ComfortMeter Round Trial

    Full text link

    Physical properties of novel co-woven-knitted fabrics

    Full text link
     Co-woven-knitted (CWK) fabrics have been reported previously. Historically these unique structures have been used to develop composite and shielding fabrics. In this study, novel CWK structures with unique appearances was developed with a modified machine using wool and polyester yarns. The physical properties of these fabrics were compared with conventional woven and knitted fabrics. The thickness of the CWK fabrics was similar to knits. The fabrics showed a unique tensile strength, with higher bending rigidity, and performed better in abrasion resistance

    Effect of fibre, yarn and knitted fabric attributes associated with wool comfort properties

    Full text link
    In this replicated experiment, we investigated the comfort properties of single jersey fabrics composed of cashmere in blends with superfine wools of different fibre curvature (crimp) where the fibre diameter of the wool and cashmere were tightly controlled. The 81 fabrics were evaluated using the Wool ComfortMeter (WCM) which has been calibrated using wearer trials of wool knitwear. General linear modelling determined the best prediction models for log10 transformed fabric WCM values using 27 fibre, 16 yarn and 30 fabric attributes. Tighter fabrics were less comfortable. Progressively blending cashmere with wool progressively increased comfort assessment. The WCM was able to detect differences between fabrics which were more supple and springy, thinner and lighter, and were composed of more elastic, uniform and stronger yarns. Together these attributes explained 82% of the variance in WCM value

    The Wool ComfortMeter and the Wool HandleMeter, new opportunities for wool

    Full text link
    Two instruments have been developed by the Sheep CRC that provide the tools for a new standard in comfort and handle for the next generation of next-to-skin wool knitwear. The Wool ComfortMeter and Wool HandleMeter provide a rapid, accurate and objective measure of two important characteristics of wool knitwear that are currently determined by subjective assessment. The Wool HandleMeter allows the prediction of a set of handle attribute values that can quantify the hand feel of a lightweight jersey fabric. The instrument uses the principle of pushing a fabric sample through a ring. The force displacement curve associated with the fabric test is characterised and used to define each fabric. These values were then compared to the average handle values, as determined by a group of experts, of a large set of lightweight knitted fabrics. Algorithms were developed that enable the instrument to more accurately predict each of seven handle attributes than an individual expert. The Wool ComfortMeter provides a measure of the fibres that are protruding from the surface of the fabric that are responsible for the itchy sensation caused by some knitwear. The results from the instrument have been compared to the results from extensive wearer trials to provide an understanding of the relationship between the instrument value and the comfort perceptions of wearers. The results have shown a very clear relationship between the instrument and wearer trials

    Effects of atmospheric pressure plasma on dye uptake by the surface of wool

    Full text link
    A woven pure wool fabric has been exposed to atmospheric pressure plasma for 30 seconds using a pilot-scale. commercial machine. X-ray photoelectron spectral data revealed large increases in oxygen and nitrogen. and a large reduction in carbon. on the surfaces of the plasma-treated fibres. A CIN ratio of 3.55 for plasma-treated wool was consistent with removal of the covalently-bound fatty acids from the surface of the cuticle cells. resulting in exposure of the proteinaceous epicuticle. Dye staining experiments revealed that the back of the fabric had received the same, uniform level of treatment as the face, despite the fact that only the face had been directly exposed to the plasma. Dyes (1 % oww) were applied to fabric at 50&deg;C (liquor ratio =40: 1) and pH values from 3 to 6. The relatively low temperature of 50&deg;C was selected in order to accentuate the effects of plasma on the rate of dye uptake. Under these conditions, dye was adsOibed onto the fibre surfaces, with very little penetration into the fibres. Effects of the plasma treatment on the rate of dyes adsorption were dyespecific. No significant effects of plasma on the rate of dye uptake were observed with relatively hydrophobic dyes, but hydrophilic dyes were adsorbed more rapidly by the plasmatreated fabric. It would appear that for more hydrophobic dyes, hydrophobic effects are more important for the adsorption of dyes by the plasma-treated fibres, even though these fibres were quite hydrophilic. On the other hand. it is concluded that for more hydrophilic dyes, electrostatic effects are more important for adsorption by the plasma-treated fibre.<br /

    Predicting comfort properties of knitted fabrics by assessing yarns with the Wool ComfortMeter

    Full text link
    This study examined the feasibility of assessing yarns with the Wool ComfortMeter (WCM) to predict the comfort properties of the corresponding single jersey-knitted fabrics. The optimum yarn arrangement to predict the comfort value of a corresponding control fabric was determined using nine wool and wool/nylon-blended yarns (mean fibre diameter range 16.5&ndash;24.9&thinsp;&mu;m) knitted into 34 different fabrics. Using a notched template, yarn winding frequencies of 1, 3, 6, 12, 25 and 50 parallel yarns were tested on the WCM. The best predictor of fabric WCM values was using 25 parallel yarns. Inclusion of knitting gauge and cover factor slightly improved predictions. This indicates that evaluation at the yarn stage would be a reliable predictor of knitted fabric comfort, and thus yarn testing would avoid the time and expense of fabric construction

    Relationships between sleeve trial and wearer trial assessment of discomfort and objective measurements

    Full text link
    The relationships were investigated between the prickle discomfort scores, assessed by human response from wearer trial garment assessment, and sleeve trial, Wool ComfortMeter (WCM) and Wool HandleMeter (WHM) assessments of fabrics, and fiber diameter characteristics including mean fiber diameter (MFD). Sleeve trial assessment followed exercise, the use of a control sleeve to reduce participant variance and four sensory traits. WHM provides eight handle parameters calibrated against a panel of experts. Four scenarios were evaluated: sleeve trial assessment with MFD; sleeve trial assessment with MFD and WCM; sleeve trial assessment with MFD, WCM and WHM parameters; and sleeve trial assessment with WCM and WHM parameters. Data were analyzed using correlation and forward stepwise general linear modeling. There was no evidence that the incidence of fibers coarser than 30 &micro;m aided the prediction of prickle discomfort once MFD had been accounted for in the models. There were significant correlations between the WCM measurement and each sleeve trial attribute. There was no significant correlation between WHM parameters and sleeve trial assessments. The sleeve trial attribute of &lsquo;skin feel&rsquo; offers potential to improve the predictions made of wearer trial prickle discomfort when used in association of the WCM with or without data on fabric MFD. There was little evidence to support using WHM parameters with or without the WCM in predicting wearer assessed prickle discomfort of fabrics. These results indicate that the rapid evaluation of fabrics using sleeve trial assessment can provide cost effective ranking of consumer preferences
    • …
    corecore