35 research outputs found

    Simultaneous detection of Escherichia coli, Salmonella enterica, Listeria monocytegenes and Bacillus cereus by oligonucleotide microarray

    Get PDF
    Background: Traditional laboratory methods to detect pathogenic bacteria are time consuming and laborious. Therefore, it is essential to use powerful and reliable molecular methods for quick and simultaneous detection of microbial pathogens. Objectives: The current study aimed to evaluate the capability and efficiency of 23S rDNA sequence for rapid and simultaneous detection of four important food-borne pathogens by an oligonucleotide microarray technique. Materials and Methods: The 23S rDNA sequences of Escherichia coli, Salmonella enterica, Listeria monocytogenes and Bacillus cereus were obtained from GenBank databases and used to design the oligonucleotide probes and primers by Vector NTI software. Oligonucleotide probes were placed on a nylon membrane and hybridization was performed between probes and 23S rDNA digoxigenin-labeled polymerase chain reaction (PCR) products. Hybridization signals were visualized by NBT/BCIP color development. Results: Positive hybridization color was produced for Escherichia coli, Salmonella enterica, Listeria monocytogenes and Bacillus cereus. The oligonucleotide microarray detected all bacterial strains in a single reaction in less than five hours. The sensitivity of the performed microarray assay was 103 cfu/mL for each species of pathogen. No cross reaction was found between the tested bacterial species. Conclusions: The obtained results indicated that amplification of 23S rDNA gene followed by oligonucleotide microarray hybridization is a rapid and reliable method to identify and discriminate foodborne pathogens tested under the study

    The effects of cyclooxygenase inhibitors on the gastric emptying and small intestine transit in the male rats following traumatic brain injury

    Get PDF
    Objective(s): This study was carried out to investigate the effects of COX-2 selective inhibitor (Celecoxib) or non-selective COX inhibitor (Ibuprofen) on gastrointestinal motility. Materials and Methods: The rats were randomly divided into five groups including: intact, sham, traumatic brain injury (TBI) group (intact rats under TBI), Celecoxib group (10 mg/kg), Ibuprofen group (10 mg/kg). Rats of the treatment groups received gavages at 1 hr before the TBI induction. The TBI was moderate and diffused using the Marmarou method. The gastric emptying and small intestine transit were measured by phenol red method. Results: The gastric emptying didn't change following TBI induction compared to intact group. The consumption of ibuprofen or celecoxib didn't have any effect on gastric emptying compared to sham group. TBI induction didn't have any effect on the intestinal transit. Also, there was no significant difference between ibuprofen or celecoxib consumption vs. sham group (P>0.05). Conclusion: The COX-2 selective inhibitor (celecoxib) or non-selective COX inhibitor (ibuprofen) have no effects on gastric or small bowel transit. Further work is necessary to investigate the effects of non-selective COX inhibitors and their impact on gastrointestinal motility disorders

    Protective effects of an interaction between vagus nerve and melatonin on gastric ischemia/reperfusion: the role of oxidative stress

    Get PDF
    Objectives: Vagal pathways in gastrointestinal tract are the most important pathways that regulate ischemia/reperfusion (I/R). Gastrointestinal tract is one of the important sources of melatonin production. The aim of this study was to investigate probable protective effect of the interaction between vagus nerve and melatonin after I/R. Materials and methods: This study was performed in male rats that were divided into six groups. Cervical vagus nerve was cut bilaterally after induction of I/R and the right one was stimulated by stimulator. Melatonin or vehicle was injected intraperitoneally. The stomach was removed for histopathological and biochemical investigations. Results: A significant decrease in infiltration of gastric neutrophils and malondialdehyde (MDA) level after I/R was induced by melatonin and was disappeared after vagotomy. The stimulation of vagus nerve significantly enhanced these effects of melatonin. However, a stimulation of vagus nerve alone increased neutrophils infiltration and MDA level. Melatonin significantly increased the activities of catalase, glutathione peroxidase (GPx), superoxide dismutases (SOD). Unlike stimulation of vagus nerve, vagotomy decreased these effects of melatonin. Conclusion: According to these results, it is probable that protective effects of melatonin after I/R may be mediated by vagus nerve. Therefore, there is an interaction between melatonin and vagus nerve in their protective effects

    Mumijo Protection gainst Acetaminophen-Induced Acute Hepatic Injury: Role of Oxidative Stress

    Get PDF
    Background: A majority of people widely use acetaminophen as a sedative. Overusing the drug for prolonged periods of time can lead to acute liver damage. Mumijo, as a strong antioxidant and anti-inflammatory drug, could possibly reduce some of the acetaminophen-induced side effects on the liver. Thus, the aim of this study is to evaluate the effect of Mumijo on the liver damage caused by the use of acetaminophen. Methods: 40 male Wistar rats were randomly divided into five groups: sham, acetaminophen, low and high doses of mumijo, and vehicle. All groups except the sham group received a single dose of 500 mg/kg acetaminophen via ip injection. Then the groups that were under treatment received 150 mg/kg (low dose) and 250 mg/kg (high dose) of mumijo, and the vehicle group received distilled water as vehicle. After 24 hours, blood samples were taken for biochemical tests, and a part of the liver was extracted for histopathological examination. Results: acetaminophen increases the activities of functional liver enzymes including alanine amino transferase (ALT), aspartate aminotransferase (AST), and gamma glutamine transferase (GGT). In groups under treatment, values of the mentioned enzymes were significantly reduced in comparison with the acetaminophen and vehicle groups (P <0.05), and on the other hand, malondialdehyde (MDA), nitric oxide (NO), and protein carbonyl (PC) increase caused by acetaminophen were reduced by mumijo. Furthermore, the amount of glutathione (GPX) was increased by mumijo (P <0.05). From a histopathological point of view, necrosis and liver damage caused by acetaminophen was decreased by mumijo. Conclusion: The findings showed that mumijo is salient in preventing liver damage caused by consumption of high doses of acetaminophen probably through reducing oxidant activities and also through increasing anti-inflammatory and antioxidant activities

    Is genistein neuroprotective in traumatic brain injury?

    Get PDF
    The concerns about negative consequences of estrogen therapy have led to introduce other strategies to obtain estrogen's benefits in the brain. The present study tests the hypothesis that a major isoflavone of soy; genistein with estrogen-like activity can be neuroprotective in traumatic brain injury (TBI). The maleWistar ratswere randomly divided to four groups: sham, TBI, vehicle and genistein. The TBI was induced byMarmarou method. The brain edema and the disruption of blood–brain-barrier (BBB)were evaluated 48 h post-TBI.Genistein (15mg/kg) or dimethyl sulfoxide (DMSO)was injected i.p., twice after TBI. The intracranial pressure (ICP), the motor performance, and the beam-walk task (WB) were determined before trauma, on trauma day (D0), and first (D1) and second (D2) days post-TBI. Genistein inhibited a development of brain edema and a BBB permeability in TBI animals. An increase of ICP and a defect in motor and WB performance were showed following TBI, in all times evaluated. An increase of ICP induced by TBI was suppressed by genistein on D1 and D2 times. Genistein improved a motor disorder induced by TBI, on D1 and D2 times. Also an increase of traversal time in WB task was suppressed by genistein in TBI animals, on D1 and D2 times. The results of this study demonstrated that genistein can be neuroprotective in TBI. Genistein inhibited the disruption of BBB, the brain edema and the increase of ICP, and the disturbance of neurobehavioral performance in TBI

    The role of estrogen and progesterone, administered alone and in combination, in modulating cytokine concentration following traumatic brain injury

    Get PDF
    Cytokines play an important role in the pathophysiology of traumatic brain injury (TBI). This study was designed to determine the effects of administering progesterone (P) and estrogen (E), alone and in combination, on brain water content, blood–brain barrier (BBB) disturbance, and brain level of cytokines following diffuse TBI. Ovariectomized rats were divided into 9 groups, treated with vehicle, E1, E2, P1, P2, E1+P1, E1+P2, E2+P1, and E2+P2. Levels of BBB disruption (5 h), cytokines, and water content (24 h) were evaluated after TBI induced by the Marmarou method. Physiological (E1 and P1) and pharmacological (E2 and P2) doses of estrogen and progesterone were administered 30 min after TBI. Water content in the E1+P2-treated group was higher than in the E1-treated group. The inhibitory effect of E2 on water content was reduced by adding progesterone. The inhibitory effect of E1 and E2 on Evans blue content was reduced by treatment with E1+P1 and E2+P2, respectively. The brain level of IL-1b was reduced in E1 and E2, after TBI. In the E2+P2-treated group, this level was higher than in the E2-treated group. The brain level of TGF-b was also elevated by the administration of progesterone and estrogen alone, and reduced when the hormones were administered in combination. In conclusion, a combined administration of progesterone and estrogen inhibited the decreasing effects of administration of progesterone and estrogen alone on water content and BBB disruption that mediated to change the proinflammatory cytokines

    Time- and Dose-Dependent Neuroprotective Effects of Sex Steroid Hormones on Inflammatory Cytokines after a Traumatic Brain Injury

    Get PDF
    Following a traumatic brain injury (TBI), excessive release of proinflammatory cytokines is the major cause of cerebral edema and neuronal loss. This study was designed to examine changes in concentrations of some proinflammatory cytokines—including interleukin-1 beta (IL-1b), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-a), and transforming growth factor-beta (TGF-b)—in a rat model of TBI in which the animals were treated with different doses of estrogen or progesterone 6 and 24 h after the TBI. Adult female rats were divided into 14 groups. Hormones or vehicle were given intraperitoneally 30 min after a moderate TBI was induced by the Marmarou method. The levels of proinflammatory cytokines in brain were measured at 6 and 24 h after the TBI. A high dose of estrogen (E2) or a low dose of progesterone (P1) increased brain levels of IL-1b 52.7% and 79.2% respectively at 6 h after the TBI. By 24h, IL-1b levels in the brain were 27.5% and 27% lower following administration of estrogen low dose (E1) or E2, respectively. High-dose administration of progesterone reduced brain levels of IL-6 to 45.9% at 6 h after the TBI, and P1 and E1 treatment significantly decreased IL-6 levels at 24 h. Brain levels of TNF-a were 72.5% lower at 6 h after the TBI following P2 treatment and 48.5% higher at 24 hrs following treatment with E2. The levels of TGF-b were also 3.37 times higher 24 h after the TBI following treatment with E1. Both doses of the hormones tested increases TGF-b levels 6 h after the TBI. Based on our findings, we conclude that progesterone and estrogen influence the levels of proinflammatory cytokines either at the primary or secondary stages after a TBI. Accordingly, this study suggests a mechanism by which hormones reduce cerebral edema

    Effect of estrogen and/or progesterone administration on traumatic brain injury-caused brain edema: the changes of aquaporin-4 and interleukin-6

    Get PDF
    Abstract The role of aquaporin-4 (AQP4) and interleukin-6 (IL-6) in the development of brain edema post-traumatic brain injury (TBI) has been indicated. The present study was designed to investigate the effect( s) of administration of progesterone (P) and/or estrogen (E) on brain water content, AQP4 expression, and IL-6 levels post-TBI. The ovariectomized rats were divided into 11 groups: sham, one vehicle, two vehicles, E1, E2, P1, P2, E1 + P1, E1 + P2, E2 + P1, and E2 + P2. The brain AQP4 expression, IL-6 levels, and water content were evaluated 24 h after TBI induced by Marmarou’s method. The low (E1 and P1) and high (E2 and P2) doses of estrogen and progesterone were administered 30 min post-TBI. The results showed that brain water content and AQP4 expression decreased in the E1, E2, P1, and P2-treated groups. The administration of E1 decreased IL-6 levels. Addition of progesterone decreased the inhibitory effect of E1 and E2 on the accumulation of water in the brain.Administration of E1 + P1 and E1 + P2 decreased the inhibitory effect of E1 on the IL-6 levels and AQP4 protein expression. Our findings suggest that estrogen or progesterone by itself has more effective roles in decrease of brain edema than combination of both. Possible mechanism may be mediated by the alteration of AQP4 and IL-6 expression. However, further studies are required to verify the exact mechanism
    corecore