32 research outputs found

    Ibuprofen Loaded Electrospun Polymeric Nanofibers: A Strategy to Improve Oral Absorption

    Get PDF
    The poor aqueous solubility of candidate drugs has presented a great challenge to formulation scientists for their effective oral delivery. Poor solubility is often associated with poor dissolution behavior and, subsequently, poor bioavailability for those drugs when intestinal absorption is dissolution rate limited. In the present study electrospun polymeric nanofibers were developed to address the poor aqueous solubility of ibuprofen, a Biopharmaceutic Classification System (BCS) class-II drug. Hydrophilic spinnable polymers like polyvinyl pyrrolidone were deployed as a carrier system for the fabrication of nanofibers. The electrospinning parameters like flow rate, voltage, and spinneret to collector distance were optimized. The fabricated ibuprofen-loaded nanofibers were characterized using scanning electron microscopy and differential scanning calorimetry. Drug release studies and ex vivo intestinal absorption studies were also carried out. The nanofiber-based platform significantly improved in vitro absorption of ibuprofen compared to pure ibuprofen crystals

    Analytical Quality by Design Approach of Reverse-Phase High-Performance Liquid Chromatography of Atorvastatin: Method Development, Optimization, Validation, and the Stability-Indicated Method

    No full text
    The use of analytical quality by design (AQbD) approach in the optimization of the high-performance liquid chromatography (RP-HPLC) method is a novel tool. Three factors and three levels of Box–Behnken statistical design (BBD) were used for method optimization and analysis of atorvastatin. The mobile phase (acetonitrile: water), flow rate (Rt), and UV wavelength were used as independent variables. Their effects were observed in the area of the chromatogram (AU), retention time (Rt, min), and tailing factor (%). The optimized HPLC condition was found as acetonitrile:water (50 : 50), flow rate (0.68 ml/min), and UV wave length (235 nm). It gives the retention time of 2.43 min with the linearity range of 5–30 μg/ml with a high regression value (r2 = 0.999). The method was found to be precise and accurate with low % RSD (<5%). The refrigeration stability indicated that atorvastatin was stable. The force degradation study showed that the atorvastatin was fully unstable in UV light and stable in 0.1 M basic condition. It concluded that this QbD optimized method is suitable for quantification of the atorvastatin from the formulation as well as pharmacokinetic parameters

    Fe(III)-Rhamnoxylan&mdash;A Novel High Spin Fe(III) Octahedral Complex Having Versatile Physical and Biological Properties

    No full text
    An iron (III) complex with rhamnoxylan, a hemicellulose from Salvia plebeia seeds, was synthesized and characterized by elemental analysis, spectroscopic and magnetic susceptibility measurements, thermal analysis and scanning electron microscopy. The rhamnoxylan was found to be a branched hemicellulose consisting of &beta;-1,4-linked xylose main chain and rhamnose attached to the chain at &beta;-1,3 positions. The complex was found to contain 18.8% w/w iron. A high-spin octahedral geometry of Fe3+ was indicated by the electronic absorption spectrum of the complex. In other experiments, the complex exhibited good electrical and magnetic properties. In vivo efficacy, as hematinic, of the complex in induced anemia was demonstrated equivalent to that of iron protein succinylate (taken as standard) as evidenced by raised red blood cell count, hemoglobin, hematocrit and total iron in rabbit. The complex was found to be non-toxic with LD50 &gt; 5000 mg kg&minus;1 body weight in rabbit. Thus, iron(III)-rhamnoxylan hold the potential for application as hematinic for treatment of iron deficiency anemia

    Extraction and Characterization of Microcrystalline Cellulose from Lagenaria siceraria Fruit Pedicles

    No full text
    Microcrystalline cellulose (MCC) is a versatile polymer commonly employed in food, chemical, and biomedical formulations. Lagenaria siceraria (bottle gourd) fruit is consumed in many parts of the world, and its pedicle is discarded as waste. In the quest for a novel renewable source of the MCC, the present study investigates the extraction and characterization of MCC from the pedicle of Lagenaria siceraria fruits. The MCC was extracted by sequentially treating pedicles with water, alkali, bleaching (sodium chlorite), and dilute sulfuric acid (acid hydrolysis). The removal of associated impurities from pedicle fibers was confirmed by Fourier transform infrared analyses. The extracted MCC exhibited a characteristic crystalline structure of cellulose in X-ray diffraction with a 64.53% crystallinity index. The scanning electron microscopy (SEM) showed the variation in the morphology of the fibers and the formation of MCC of approximately 100 &micro;m. The thermogravimetric analysis (TGA) indicated higher thermal stability of MCC. MCC production from biowaste (pedicle) holds potential for application as an emulsifier, stabilizer, and thickener in the chemical, pharmaceutical, and food industries

    Potential of solid dispersions to enhance solubility, bioavailability, and therapeutic efficacy of poorly water-soluble drugs: newer formulation techniques, current marketed scenario and patents

    No full text
    In the last few decades, solid dispersion (SD) technology had been studied as an approach to produce an amorphous carrier to enhance the solubility, dissolution rate, and bioavailability of poorly water-soluble drugs. The use of suitable carrier and methodology in the preparation of SDs play a significant role in the biological behavior of the SDs. SDs have been prepared using a variety of pharmaceutically acceptable polymers utilizing various novel technologies. In the recent years, much attention has been paid toward the use of novel carriers and methodologies in exploring novel types of SDs to enhance therapeutic efficacy and bioavailability. The use of novel carriers and methodologies would be very beneficial for formulation scientists to develop some SDs-based formulations for their commercial use and clinical applications. In the present review, current literature of novel methodologies for SD preparation to enhance the dissolution rate, solubility, therapeutic efficacy, and bioavailability of poorly water-soluble drugs has been summarized and analyzed. Further, the current status of SDs, patent status, and future prospects have also been discussed

    Development and Characterization of Hemicellulose-Based Films for Antibacterial Wound-Dressing Application

    No full text
    Hemicelluloses are biopolymers with versatile properties for biomedical applications. Herein, hemicellulose (arabinoxylan)-based antibacterial film dressings were prepared and characterized. Arabinoxylan was isolated from psyllium husk. Blank and gentamicin-loaded films were prepared by the solvent cast method using glycerol as the plasticizer. The appropriate composition of the films was obtained by varying the amounts of arabinoxylan, glycerol, and gentamicin. The films were found to be transparent, smooth, bubble-free, flexible, and easily peelable with 2% to 3% arabinoxylan. They had uniform thickness and swelled up to 60% of their initial size. The mechanical properties and water vapor transmission rate through the films were found to be suitable for wound-dressing application. Fourier transform infrared spectroscopy (FTIR) analysis confirmed drug–film compatibility. In an in vitro release study, more than 85% of the gentamicin was released from the films in 12 h. The antibacterial activities of the gentamicin-loaded films were found to be close to the standard gentamicin solution. The films were found to be cytocompatible in cell viability assay. These results suggested that hemicellulose-based films are promising materials for the dressing of infected wounds

    Long-Acting Paliperidone Parenteral Formulations Based on Polycaprolactone Nanoparticles; the Influence of Stabilizer and Chitosan on In Vitro Release, Protein Adsorption, and Cytotoxicity

    No full text
    Long-acting preparations containing the antipsychotic paliperidone for intramuscular injection has drawn considerable attention to achieve harmless long-term treatment. This study aimed to develop paliperidone loaded polycaprolactone (PCL) nanoparticles and investigate the influence of PCL/drug ratio, stabilizer type, and chitosan coating on physicochemical properties, protein adsorption, and cellular toxicity. Results showed that chitosan coating produced enlarged particle sizes, shifted the surface charges from negative into positive and did not influence encapsulation efficiencies. Chitosan coating relatively sustained the drug release especially in pluronic stabilized formulations. Pluronic F127 based formulations exhibited the least protein adsorption (384.3 &mu;g/mL). Chitosan coating of Tween 80 and polyvinyl alcohol stabilized formulations significantly (p &lt; 0.05) increased protein adsorption. Cellular viability was concentration-dependent and negatively affected by stabilizers. All formulations did not show cellular death at 1.56 &mu;g/mL. Inflammatory responses and oxidative stress were less affected by Tween 80 compared with other stabilizers. Chitosan minimized all aspects of cellular toxicity. Collectively, stabilizer type and chitosan coating play critical roles in developing safe and effective long-acting PCL nanoparticles intended for parenteral drug delivery. The coated formulations containing Tween 80 and Pluronic F127 as stabilizers are warranted a future in vivo study to delineate its safety and efficacy profiles

    English

    No full text
    This study was aimed to develop the haloperidol (HPL) loaded solid lipid nanoparticles (SLNs) for brain targeting through the intranasal route. SLNs were fabricated by the emulsification diffusion technique using glyceryl behenate as lipid and tween 80 as a surfactant. SLNs were evaluated for particle size, zeta potential, structure, entrapment efficiency, solid state characterization by differential scanning calorimetry (DSC), and in-vitro release. In-vivo biological evaluation was performed on albino Wistar rats for the determination of pharmacokinetic as well as brain targeting parameters. Particle size, PDI, zeta potential, and entrapment efficiency of optimized formulation (HPL-SLNs 6) were found to be 103±09 nm, 0.190±0.029, -23.5±1.07 mV, and 79.46±1.97% respectively. In-vitro drug release studies exhibited that 87.21± 3.63% of the entrapped drug was released from the SLNs within 24 h. DSC curves confirmed that during entrapment in SLNs, the drug was solubilized in the lipid matrix and converted into the amorphous form. Enhanced HPL targeting to the brain was observed from HPL-SLNs as compared to HPL-Sol when administered intranasally. The value of AUC 0-∞ in the brain for HPL-SLNs i.n. was found to be nearly 2.7 times higher than that of HPL-Sol i.v., whereas 3.66 times superior to HPL-Sol administered i.n. Stability studies revealed that the formulation remains unchanged when stored at 4±2 °C (refrigerator) and 25±2 °C /60 ±5% RH up to six months. Finally, it could be concluded that SLN is a suitable carrier for HPL with enhanced brain targeting through i.n administration, as compared to the HPL-Sol, administered i.n. and i.v

    Recent Advancement in Chitosan-Based Nanoparticles for Improved Oral Bioavailability and Bioactivity of Phytochemicals: Challenges and Perspectives

    No full text
    The excellent therapeutic potential of a variety of phytochemicals in different diseases has been proven by extensive studies throughout history. However, most phytochemicals are characterized by a high molecular weight, poor aqueous solubility, limited gastrointestinal permeability, extensive pre-systemic metabolism, and poor stability in the harsh gastrointestinal milieu. Therefore, loading of these phytochemicals in biodegradable and biocompatible nanoparticles (NPs) might be an effective approach to improve their bioactivity. Different nanocarrier systems have been developed in recent decades to deliver phytochemicals. Among them, NPs based on chitosan (CS) (CS-NPs), a mucoadhesive, non-toxic, and biodegradable polysaccharide, are considered the best nanoplatform for the oral delivery of phytochemicals. This review highlights the oral delivery of natural products, i.e., phytochemicals, encapsulated in NPs prepared from a natural polymer, i.e., CS, for improved bioavailability and bioactivity. The unique properties of CS for oral delivery such as its mucoadhesiveness, non-toxicity, excellent stability in the harsh environment of the GIT, good solubility in slightly acidic and alkaline conditions, and ability to enhance intestinal permeability are discussed first, and then the outcomes of various phytochemical-loaded CS-NPs after oral administration are discussed in detail. Furthermore, different challenges associated with the oral delivery of phytochemicals with CS-NPs and future directions are also discussed

    Antibiotic-Loaded Psyllium Husk Hemicellulose and Gelatin-Based Polymeric Films for Wound Dressing Application

    No full text
    Wound infections are one of the major reasons for the delay in the healing of chronic wounds and can be overcome by developing effective wound dressings capable of absorbing exudate, providing local antibiotic release, and improving patient comfort. Arabinoxylan (AX) is a major hemicellulose present in psyllium seed husk (PSH) and exhibits promising characteristics for developing film dressings. Herein, AX-gelatin (GL) films were prepared by blending AX, gelatin (GL), glycerol, and gentamicin (antibiotic). Initially, the optimal quantities of AX, GL, and glycerol for preparing transparent, bubble-free, smooth, and foldable AX-GL films were found. Physiochemical, thermal, morphological, drug release, and antibacterial characteristics of the AX-GL films were evaluated to investigate their suitability as wound dressings. The findings suggested that the mechanical, water vapor transmission, morphological, and expansion characteristics of the optimized AX-GL films were within the required range for wound dressing. The results of Fourier-transform infrared (FTIR) analyses suggested chemical compatibility among the ingredients of the films. In in vitro drug release and antibacterial activity experiments, gentamicin (GM)-loaded AX-GL films released approximately 89% of the GM in 24 h and exhibited better antibacterial activity than standard GM solution. These results suggest that AX-GL films could serve as a promising dressing to protect against wound infections
    corecore