11 research outputs found

    Low mid-upper arm circumference identifies children with a high risk of death who should be the priority target for treatment

    No full text
    Background: Severe acute malnutrition (SAM) is currently defined by the WHO as either a low mid-upper arm circumference (i.e. MUAC <115 mm), a low weight-for-height z-score (i.e. WHZ <- 3), or bilateral pitting oedema. MUAC and WHZ do not always identify the same children as having SAM. This has generated broad debate, as illustrated by the recent article by Grellety & Golden (BMC Nutr. 2016;2:10). Discussion: Regional variations in the proportion of children selected by each index seem mostly related to differences in body shape, including stuntedness. However, the practical implications of these variations in relation to nutritional status and also to outcome are not clear. All studies that have examined the relationship between anthropometry and mortality in representative population samples in Africa and in Asia have consistently showed that MUAC is more sensitive at high specificity levels than WHZ for identifying children at high risk of death. Children identified as SAM cases by low MUAC gain both weight and MUAC in response to treatment. The widespread use of MUAC has brought enormous benefits in terms of the coverage and efficiency of programs. As a large high-risk group responding to treatment, children with low MUAC should be regarded as a public health priority independently of their WHZ. Conclusion: While a better understanding of the mechanism behind the discrepancy between MUAC and WHZ is desirable, research in this area should not delay the implementation of programs aiming at effectively reducing malnutrition-related deaths by prioritising the detection and treatment of children with low MUAC

    Model-based Cross-correlation Search for Gravitational Waves from the Low-mass X-Ray Binary Scorpius X-1 in LIGO O3 Data

    Get PDF
    We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO and Advanced Virgo. This is a semicoherent search that uses details of the signal model to coherently combine data separated by less than a specified coherence time, which can be adjusted to balance sensitivity with computing cost. The search covered a range of gravitational-wave frequencies from 25 to 1600 Hz, as well as ranges in orbital speed, frequency, and phase determined from observational constraints. No significant detection candidates were found, and upper limits were set as a function of frequency. The most stringent limits, between 100 and 200 Hz, correspond to an amplitude h0 of about 10−25 when marginalized isotropically over the unknown inclination angle of the neutron star's rotation axis, or less than 4 × 10−26 assuming the optimal orientation. The sensitivity of this search is now probing amplitudes predicted by models of torque balance equilibrium. For the usual conservative model assuming accretion at the surface of the neutron star, our isotropically marginalized upper limits are close to the predicted amplitude from about 70 to 100 Hz; the limits assuming that the neutron star spin is aligned with the most likely orbital angular momentum are below the conservative torque balance predictions from 40 to 200 Hz. Assuming a broader range of accretion models, our direct limits on gravitational-wave amplitude delve into the relevant parameter space over a wide range of frequencies, to 500 Hz or more

    Search for subsolar-mass black hole binaries in the second part of Advanced LIGO’s and Advanced Virgo’s third observing run

    No full text
    corecore