33 research outputs found

    Histomorphological study of the spinal growth plates from the convex side and the concave side in adolescent idiopathic scoliosis

    Get PDF
    Asymmetrical growth of the vertebrae has been implicated as one possible etiologic factor in the pathogenesis of adolescent idiopathic scoliosis. The longitudinal vertebral growth derives from the endochondral ossification of the vertebral growth plate. In the present study, the growth plates from the convex and concave side of the vertebrae were characterized by the method of histology and immunohistochemistry to evaluate the growth activity, cell proliferation, and apoptosis. Normal zoned architectures were observed in the convex side of the growth plate and disorganized architectures in the concave side. The histological grades were significantly different between the convex and the concave side of the growth plate in the apex vertebrae (P < 0.05). The histological difference was also found significant statistically between end vertebrae and apex vertebrae in the concave side of vertebral growth plates (P < 0.05). The proliferative potential indexes and apoptosis indexes of chondrocytes in the proliferative and hypertrophic zone in the convex side were significantly higher than that in the concave side in the apex vertebral growth plate (P < 0.05). There was a significant difference of the proliferative potential index (proliferating cell nuclear antigen, PCNA index) between convex side and concave side at the upper end vertebra (P < 0.05). The difference of the proliferative potential index and apoptosis index were found significant statistically in the concave side of the vertebral growth plate between end vertebrae and apex vertebrae (P < 0.05). The same result was also found for the apoptosis index (terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate biotin nick end labeling assay, TUNEL index) in the convex side of vertebral growth plate between end vertebrae and apex vertebrae (P < 0.05). Some correlation were found between radiographic measurements and proliferation and apoptosis indexes. The difference in histological grades and cellular activity between the convex and concave side indicated that the bilateral growth plate of the vertebrae in AIS patients have different growth kinetics which may affect the curve progression

    Bone growth during rapamycin therapy in young rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rapamycin is an effective immunosuppressant widely used to maintain the renal allograft in pediatric patients. Linear growth may be adversely affected in young children since rapamycin has potent anti-proliferative and anti-angiogenic properties.</p> <p>Methods</p> <p>Weanling three week old rats were given rapamycin at 2.5 mg/kg daily by gavage for 2 or 4 weeks and compared to a Control group given equivalent amount of saline. Morphometric measurements and biochemical determinations for serum calcium, phosphate, iPTH, urea nitrogen, creatinine and insulin-growth factor I (IGF-I) were obtained. Histomorphometric analysis of the growth plate cartilage, in-situ hybridization experiments and immunohistochemical studies for various proteins were performed to evaluate for chondrocyte proliferation, chondrocyte differentiation and chondro/osteoclastic resorption.</p> <p>Results</p> <p>At the end of the 2 weeks, body and tibia length measurements were shorter after rapamycin therapy associated with an enlargement of the hypertrophic zone in the growth plate cartilage. There was a decrease in chondrocyte proliferation assessed by <it>histone-4 </it>and <it>mammalian target of rapamycin </it>(<it>mTOR</it>) expression. A reduction in <it>parathyroid hormone/parathyroid hormone related peptide (PTH/PTHrP) </it>and an increase in <it>Indian hedgehog </it>(<it>Ihh</it>) expression may explain in part, the increase number of hypertrophic chondrocytes. The number of TRAP positive multinucleated chondro/osteoclasts declined in the chondro-osseous junction with a decrease in the <it>receptor activator of nuclear factor kappa Ξ² ligand </it>(<it>RANKL</it>) and <it>vascular endothelial growth factor </it>(<it>VEGF</it>) expression. Although body and tibial length remained short after 4 weeks of rapamycin, changes in the expression of chondrocyte proliferation, chondrocyte differentiation and chondro/osteoclastic resorption which were significant after 2 weeks of rapamycin improved at the end of 4 weeks.</p> <p>Conclusion</p> <p>When given to young rats, 2 weeks of rapamycin significantly decreased endochondral bone growth. No catch-up growth was demonstrated at the end of 4 weeks, although markers of chondrocyte proliferation and differentiation improved. Clinical studies need to be done to evaluate these changes in growing children.</p

    Growth Hormone Improves Growth Retardation Induced by Rapamycin without Blocking Its Antiproliferative and Antiangiogenic Effects on Rat Growth Plate

    Get PDF
    Rapamycin, an immunosuppressant agent used in renal transplantation with antitumoral properties, has been reported to impair longitudinal growth in young individuals. As growth hormone (GH) can be used to treat growth retardation in transplanted children, we aimed this study to find out the effect of GH therapy in a model of young rat with growth retardation induced by rapamycin administration. Three groups of 4-week-old rats treated with vehicle (C), daily injections of rapamycin alone (RAPA) or in combination with GH (RGH) at pharmacological doses for 1 week were compared. GH treatment caused a 20% increase in both growth velocity and body length in RGH animals when compared with RAPA group. GH treatment did not increase circulating levels of insulin-like growth factor I, a systemic mediator of GH actions. Instead, GH promoted the maturation and hypertrophy of growth plate chondrocytes, an effect likely related to AKT and ERK1/2 mediated inactivation of GSK3Ξ², increase of glycogen deposits and stabilization of Ξ²-catenin. Interestingly, GH did not interfere with the antiproliferative and antiangiogenic activities of rapamycin in the growth plate and did not cause changes in chondrocyte autophagy markers. In summary, these findings indicate that GH administration improves longitudinal growth in rapamycin-treated rats by specifically acting on the process of growth plate chondrocyte hypertrophy but not by counteracting the effects of rapamycin on proliferation and angiogenesis

    The primary cilium as a dual sensor of mechanochemical signals in chondrocytes

    Get PDF
    The primary cilium is an immotile, solitary, and microtubule-based structure that projects from cell surfaces into the extracellular environment. The primary cilium functions as a dual sensor, as mechanosensors and chemosensors. The primary cilia coordinate several essential cell signaling pathways that are mainly involved in cell division and differentiation. A primary cilium malfunction can result in several human diseases. Mechanical loading is sense by mechanosensitive cells in nearly all tissues and organs. With this sensation, the mechanical signal is further transduced into biochemical signals involving pathways such as Akt, PKA, FAK, ERK, and MAPK. In this review, we focus on the fundamental functional and structural features of primary cilia in chondrocytes and chondrogenic cells

    C/EBPΞ² Promotes Transition from Proliferation to Hypertrophic Differentiation of Chondrocytes through Transactivation of p57Kip2

    Get PDF
    BACKGROUND: Although transition from proliferation to hypertrophic differentiation of chondrocytes is a crucial step for endochondral ossification in physiological skeletal growth and pathological disorders like osteoarthritis, the underlying mechanism remains an enigma. This study investigated the role of the transcription factor CCAAT/enhancer-binding protein beta (C/EBPbeta) in chondrocytes during endochondral ossification. METHODOLOGY/PRINCIPAL FINDINGS: Mouse embryos with homozygous deficiency in C/EBPbeta (C/EBPbeta-/-) exhibited dwarfism with elongated proliferative zone and delayed chondrocyte hypertrophy in the growth plate cartilage. In the cultures of primary C/EBPbeta-/- chondrocytes, cell proliferation was enhanced while hypertrophic differentiation was suppressed. Contrarily, retroviral overexpression of C/EBPbeta in chondrocytes suppressed the proliferation and enhanced the hypertrophy, suggesting the cell cycle arrest by C/EBPbeta. In fact, a DNA cell cycle histogram revealed that the C/EBPbeta overexpression caused accumulation of cells in the G0/G1 fraction. Among cell cycle factors, microarray and real-time RT-PCR analyses have identified the cyclin-dependent kinase inhibitor p57(Kip2) as the transcriptional target of C/EBPbeta. p57(Kip2) was co-localized with C/EBPbeta in late proliferative and pre-hypertrophic chondrocytes of the mouse growth plate, which was decreased by the C/EBPbeta deficiency. Luciferase-reporter and electrophoretic mobility shift assays identified the core responsive element of C/EBPbeta in the p57(Kip2) promoter between -150 and -130 bp region containing a putative C/EBP motif. The knockdown of p57(Kip2) by the siRNA inhibited the C/EBPbeta-induced chondrocyte hypertrophy. Finally, when we created the experimental osteoarthritis model by inducing instability in the knee joints of adult mice of wild-type and C/EBPbeta+/- littermates, the C/EBPbeta insufficiency caused resistance to joint cartilage destruction. CONCLUSIONS/SIGNIFICANCE: C/EBPbeta transactivates p57(Kip2) to promote transition from proliferation to hypertrophic differentiation of chondrocytes during endochondral ossification, suggesting that the C/EBPbeta-p57(Kip2) signal would be a therapeutic target of skeletal disorders like growth retardation and osteoarthritis

    Mechanical Influences on Morphogenesis of the Knee Joint Revealed through Morphological, Molecular and Computational Analysis of Immobilised Embryos

    Get PDF
    Very little is known about the regulation of morphogenesis in synovial joints. Mechanical forces generated from muscle contractions are required for normal development of several aspects of normal skeletogenesis. Here we show that biophysical stimuli generated by muscle contractions impact multiple events during chick knee joint morphogenesis influencing differential growth of the skeletal rudiment epiphyses and patterning of the emerging tissues in the joint interzone. Immobilisation of chick embryos was achieved through treatment with the neuromuscular blocking agent Decamethonium Bromide. The effects on development of the knee joint were examined using a combination of computational modelling to predict alterations in biophysical stimuli, detailed morphometric analysis of 3D digital representations, cell proliferation assays and in situ hybridisation to examine the expression of a selected panel of genes known to regulate joint development. This work revealed the precise changes to shape, particularly in the distal femur, that occur in an altered mechanical environment, corresponding to predicted changes in the spatial and dynamic patterns of mechanical stimuli and region specific changes in cell proliferation rates. In addition, we show altered patterning of the emerging tissues of the joint interzone with the loss of clearly defined and organised cell territories revealed by loss of characteristic interzone gene expression and abnormal expression of cartilage markers. This work shows that local dynamic patterns of biophysical stimuli generated from muscle contractions in the embryo act as a source of positional information guiding patterning and morphogenesis of the developing knee joint

    Bioengineering Cartilage Growth, Maturation, and Form

    Get PDF
    Cartilage of articular joints grows and matures to achieve characteristic sizes, forms, and functional properties. Through these processes, the tissue not only serves as a template for bone growth but also yields mature articular cartilage providing joints with a low-friction, wear-resistant bearing material. The study of cartilage growth and maturation is a focus of both cartilage biologists and bioengineers with one goal of trying to create biologic tissue substitutes for the repair of damaged joints. Experimental approaches both in vivo and in vitro are being used to better understand the mechanisms and regulation of growth and maturation processes. This knowledge may facilitate the controlled manipulation of cartilage size, shape, and maturity to meet the criteria needed for successful clinical applications. Mathematical models are also useful tools for quantitatively describing the dynamically changing composition, structure and function of cartilage during growth and maturation and may aid the development of tissue engineering solutions. Recent advances in methods of cartilage formation and culture which control the size, shape, and maturity of these tissues are numerous and provide contrast to the physiologic development of cartilage
    corecore