1 research outputs found

    Mechanisms of resistance in postharvest fruit-pathogen interaction

    Get PDF
    Abstract T he objective of this review was to bring together concepts related to studies aimed at elucidating defense mechanisms against disease-causing agents, mainly in postharvest. Like plants, fruits are exposed to attack by pathogens that cause rot during postharvest storage, resulting in considerable losses. To control these pathogens, synthetic chemicals are used; however, since they are toxic, genetic resistance is regarded as a viable alternative. Fruits can withstand pathogens by means of physical barriers (presence of thick cuticular or trichome layers) and chemical ones, or through induced defenses that are activated once the host detects the presence of the pathogen, triggering the oxidative burst during the early hours of interaction. This burst entails the generation of reactive oxygen species (ROS), such as superoxide (O 2藟) , hydroxyl radical (OH藟) or hydrogen peroxide (H 2 O 2 ), and the activation of genes involved in several metabolic pathways. The study of such mechanisms may allow detecting disease-resistant genetic materials, thus reducing the use of toxic products. Resumen E l objetivo de esta revisi贸n fue conjuntar conceptos relacionados con estudios dirigidos a elucidar los mecanismos de defensa contra agentes causantes de enfermedades, principalmente en poscosecha. Al igual que las plantas, los frutos se encuentran expuestos al ataque por pat贸genos que producen podredumbres durante su almacenamiento en poscosecha, causando considerables p茅rdidas. Para el control de dichos pat贸genos, se emplean productos qu铆micos de s铆ntesis que son t贸xicos, y la resistencia gen茅tica se considera una alternativa viable. Los frutos pueden tolerar a los pat贸genos mediante barreras f铆sicas (presencia de capas gruesas de cut铆cula o de tricomas) y qu铆micas, o bien, a trav茅s de defensas inducidas que se activan una vez que el hu茅sped detecta la presencia del pat贸geno, desencadenando la explosi贸n oxidativa durante las primeras horas de la interacci贸n. Esta explosi贸n conlleva la generaci贸n de especies reactivas de ox铆geno (ROS) como el super贸xido (O 2藟) , el radical hidroxilo (OH藟) o el per贸xido de hidr贸geno (H 2 O 2 ), y la activaci贸n de genes involucrados en diversas rutas metab贸licas. El estudio de tales mecanismos puede permitir detectar materiales gen茅ticos resistentes a enfermedades, reduciendo as铆 el uso de productos t贸xicos
    corecore