Mechanisms of resistance in postharvest fruit-pathogen interaction

Abstract

Abstract T he objective of this review was to bring together concepts related to studies aimed at elucidating defense mechanisms against disease-causing agents, mainly in postharvest. Like plants, fruits are exposed to attack by pathogens that cause rot during postharvest storage, resulting in considerable losses. To control these pathogens, synthetic chemicals are used; however, since they are toxic, genetic resistance is regarded as a viable alternative. Fruits can withstand pathogens by means of physical barriers (presence of thick cuticular or trichome layers) and chemical ones, or through induced defenses that are activated once the host detects the presence of the pathogen, triggering the oxidative burst during the early hours of interaction. This burst entails the generation of reactive oxygen species (ROS), such as superoxide (O 2ˉ) , hydroxyl radical (OHˉ) or hydrogen peroxide (H 2 O 2 ), and the activation of genes involved in several metabolic pathways. The study of such mechanisms may allow detecting disease-resistant genetic materials, thus reducing the use of toxic products. Resumen E l objetivo de esta revisión fue conjuntar conceptos relacionados con estudios dirigidos a elucidar los mecanismos de defensa contra agentes causantes de enfermedades, principalmente en poscosecha. Al igual que las plantas, los frutos se encuentran expuestos al ataque por patógenos que producen podredumbres durante su almacenamiento en poscosecha, causando considerables pérdidas. Para el control de dichos patógenos, se emplean productos químicos de síntesis que son tóxicos, y la resistencia genética se considera una alternativa viable. Los frutos pueden tolerar a los patógenos mediante barreras físicas (presencia de capas gruesas de cutícula o de tricomas) y químicas, o bien, a través de defensas inducidas que se activan una vez que el huésped detecta la presencia del patógeno, desencadenando la explosión oxidativa durante las primeras horas de la interacción. Esta explosión conlleva la generación de especies reactivas de oxígeno (ROS) como el superóxido (O 2ˉ) , el radical hidroxilo (OHˉ) o el peróxido de hidrógeno (H 2 O 2 ), y la activación de genes involucrados en diversas rutas metabólicas. El estudio de tales mecanismos puede permitir detectar materiales genéticos resistentes a enfermedades, reduciendo así el uso de productos tóxicos

    Similar works