702 research outputs found
Cortical plasticity as a new endpoint measurement for chronic pain
Animal models of chronic pain are widely used to investigate basic mechanisms of chronic pain and to evaluate potential novel drugs for treating chronic pain. Among the different criteria used to measure chronic pain, behavioral responses are commonly used as the end point measurements. However, not all chronic pain conditions can be easily measured by behavioral responses such as the headache, phantom pain and pain related to spinal cord injury. Here I propose that cortical indexes, that indicate neuronal plastic changes in pain-related cortical areas, can be used as endpoint measurements for chronic pain. Such cortical indexes are not only useful for those chronic pain conditions where a suitable animal model is lacking, but also serve as additional screening methods for potential drugs to treat chronic pain in humans. These cortical indexes are activity-dependent immediate early genes, electrophysiological identified plastic changes and biochemical assays of signaling proteins. It can be used to evaluate novel analgesic compounds that may act at peripheral or spinal sites. I hope that these new cortical endpoint measurements will facilitate our search for new, and more effective, pain medicines, and help to reduce false lead drug targets
High-order harmonic generation with a strong laser field and an attosecond-pulse train: the Dirac Delta comb and monochromatic limits
In recent publications, it has been shown that high-order harmonic generation
can be manipulated by employing a time-delayed attosecond pulse train
superposed to a strong, near-infrared laser field. It is an open question,
however, which is the most adequate way to approximate the attosecond pulse
train in a semi-analytic framework. Employing the Strong-Field Approximation
and saddle-point methods, we make a detailed assessment of the spectra obtained
by modeling the attosecond pulse train by either a monochromatic wave or a
Dirac-Delta comb. These are the two extreme limits of a real train, which is
composed by a finite set of harmonics. Specifically, in the monochromatic
limit, we find the downhill and uphill sets of orbits reported in the
literature, and analyze their influence on the high-harmonic spectra. We show
that, in principle, the downhill trajectories lead to stronger harmonics, and
pronounced enhancements in the low-plateau region. These features are analyzed
in terms of quantum interference effects between pairs of quantum orbits, and
compared to those obtained in the Dirac-Delta limit.Comment: 10 pages, 7 figures (eps files). To appear in Laser Physic
Entanglement and Timing-Based Mechanisms in the Coherent Control of Scattering Processes
The coherent control of scattering processes is considered, with electron
impact dissociation of H used as an example. The physical mechanism
underlying coherently controlled stationary state scattering is exposed by
analyzing a control scenario that relies on previously established entanglement
requirements between the scattering partners. Specifically, initial state
entanglement assures that all collisions in the scattering volume yield the
desirable scattering configuration. Scattering is controlled by preparing the
particular internal state wave function that leads to the favored collisional
configuration in the collision volume. This insight allows coherent control to
be extended to the case of time-dependent scattering. Specifically, we identify
reactive scattering scenarios using incident wave packets of translational
motion where coherent control is operational and initial state entanglement is
unnecessary. Both the stationary and time-dependent scenarios incorporate
extended coherence features, making them physically distinct. From a
theoretical point of view, this work represents a large step forward in the
qualitative understanding of coherently controlled reactive scattering. From an
experimental viewpoint, it offers an alternative to entanglement-based control
schemes. However, both methods present significant challenges to existing
experimental technologies
Extrapolation of neutron-rich isotope cross-sections from projectile fragmentation
Using the measured fragmentation cross sections produced from the 48Ca and
64Ni beams at 140 MeV per nucleon on 9Be and 181Ta targets, we find that the
cross sections of unmeasured neutron rich nuclei can be extrapolated using a
systematic trend involving the average binding energy. The extrapolated
cross-sections will be very useful in planning experiments with neutron rich
isotopes produced from projectile fragmentation. The proposed method is general
and could be applied to other fragmentation systems including those used in
other radioactive ion beam facilities.Comment: accepted for publication in Europhysics Letter
The Hyper Suprime-Cam SSP Survey: Overview and Survey Design
Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of
the 8.2m Subaru telescope on the summit of Maunakea in Hawaii. A team of
scientists from Japan, Taiwan and Princeton University is using HSC to carry
out a 300-night multi-band imaging survey of the high-latitude sky. The survey
includes three layers: the Wide layer will cover 1400 deg in five broad
bands (), with a point-source depth of . The
Deep layer covers a total of 26~deg in four fields, going roughly a
magnitude fainter, while the UltraDeep layer goes almost a magnitude fainter
still in two pointings of HSC (a total of 3.5 deg). Here we describe the
instrument, the science goals of the survey, and the survey strategy and data
processing. This paper serves as an introduction to a special issue of the
Publications of the Astronomical Society of Japan, which includes a large
number of technical and scientific papers describing results from the early
phases of this survey.Comment: 14 pages, 7 figures, 5 tables. Corrected for a typo in the
coordinates of HSC-Wide spring equatorial field in Table
Development of wide range photon detection system for muonic X-ray spectroscopy
We have developed a photon detection system for muonic X-ray spectroscopy.
The detector system consists of high-purity germanium detectors with BGO
Compton suppressors. The signals from the detectors are readout with a digital
acquisition system. The absolute energy accuracy, energy and timing
resolutions, photo-peak efficiency, the performance of the Compton suppressor,
and high count rate durability are studied with standard -ray sources
and in-beam experiment using
resonance reaction. The detection system was demonstrated at Paul Scherrer
Institute. A calibration method for a photon detector at a muon facility using
muonic X-rays of Au and Bi is proposed
- …