28,198 research outputs found
The Boltzmann Equation in Classical Yang-Mills Theory
We give a detailed derivation of the Boltzmann equation, and in particular
its collision integral, in classical field theory. We first carry this out in a
scalar theory with both cubic and quartic interactions and subsequently in a
Yang-Mills theory. Our method is not relied on a doubling of the fields, rather
it is based on a diagrammatic approach representing the classical solution to
the problem.Comment: 24 pages, 7 figures; v2: typos corrected, reference added, published
in Eur. Phys. J.
Jet evolution from weak to strong coupling
Recent studies, using the AdS/CFT correspondence, of the radiation produced
by a decaying system or by an accelerated charge in the N=4 supersymmetric
Yang-Mills theory, led to a striking result: the 'supergravity backreaction',
which is supposed to describe the energy density at infinitely strong coupling,
yields exactly the same result as at zero coupling, that is, it shows no trace
of quantum broadening. We argue that this is not a real property of the
radiation at strong coupling, but an artifact of the backreaction calculation,
which is unable to faithfully capture the space-time distribution of the
radiation. This becomes obvious in the case of a decaying system ('virtual
photon'), for which the backreaction is tantamount to computing a three-point
function in the conformal gauge theory, which is independent of the coupling
since protected by symmetries. Whereas this non-renormalization property is
specific to the conformal N=4 SYM theory, we argue that the failure of the
three-point function to provide a local measurement is in fact generic: it
holds in any field theory with non-trivial interactions. To properly study a
localized distribution, one should rather compute a four-point function, as
standard in deep inelastic scattering. We substantiate these considerations
with studies of the radiation produced by the decay of a time-like photon at
both weak and strong coupling. We show that by computing four-point functions,
in perturbation theory at weak coupling and, respectively, from Witten diagrams
at strong coupling, one can follow the quantum evolution and thus demonstrate
the broadening of the energy distribution. This broadening is slow when the
coupling is weak but it proceeds as fast as possible in the limit of a strong
coupling.Comment: 49 pages, 6 figure
Analytic pulse design for selective population transfer in many-level quantum systems: maximizing amplitude of population oscillations
State selective preparation and manipulation of discrete-level quantum
systems such as atoms, molecules or quantum dots is a the ultimate tool for
many diverse fields such as laser control of chemical reactions, atom optics,
high-precision metrology and quantum computing. Rabi oscillations are one of
the simplest, yet potentially quite useful mechanisms for achieving such
manipulation. Rabi theory establishes that in the two-level systems resonant
drive leads to the periodic and complete population oscillations between the
two system levels. In this paper an analytic optimization algorithm for
producing Rabi-like oscillations in the general discrete many-level quantum
systems is presented.Comment: Published in Phys.Rev.A. This is the final published versio
Resumming large higher-order corrections in non-linear QCD evolution
Linear and non-linear QCD evolutions at high energy suffer from severe issues
related to convergence, due to higher order corrections enhanced by large
double and single transverse logarithms. We resum double logarithms to all
orders by taking into account successive soft gluon emissions strongly ordered
in lifetime. We further resum single logarithms generated by the first
non-singular part of the splitting functions and by the one-loop running of the
coupling. The resulting collinearly improved BK equation admits stable
solutions, which are used to successfully fit the HERA data at small-x for
physically acceptable initial conditions and reasonable values of the fit
parameters.Comment: 4 pages, 4 figures, based on talk given at Hard Probes 2015, 29 June
- 3 July 2015, Montreal, Canad
Resummation of Large Logarithms in the Rapidity Evolution of Color Dipoles
Perturbative corrections beyond leading-log accuracy to BFKL and BK
equations, describing the rapidity evolution of QCD scattering amplitudes at
high energy, exhibit strong convergence problems due to radiative corrections
enhanced by large single and double transverse logs. We identify explicitly the
physical origin of double transverse logs and resum them directly in coordinate
space as appropriate for BK equation, in terms of an improved local-in-rapidity
evolution kernel. Numerical results show the crucial role of double-logarithmic
resummation for BK evolution, which is stabilized and slowed down by roughly a
factor of two.Comment: 6 pages, 4 figures; Proceedings of the XXIII International Workshop
on Deep-Inelastic Scattering (27 April-May 1 2015, Dallas (USA)
Comparison of quantum mechanical and classical trajectory calculations of cross sections for ion-atom impact ionization of negative - and positive -ions for heavy ion fusion applications
Stripping cross sections in nitrogen have been calculated using the classical
trajectory approximation and the Born approximation of quantum mechanics for
the outer shell electrons of 3.2GeV I and Cs ions. A large
difference in cross section, up to a factor of six, calculated in quantum
mechanics and classical mechanics, has been obtained. Because at such high
velocities the Born approximation is well validated, the classical trajectory
approach fails to correctly predict the stripping cross sections at high
energies for electron orbitals with low ionization potential.Comment: submitted to Phys. Rev.
- …
