17 research outputs found

    Genotranscriptomic meta-analysis of the Polycomb gene CBX2 in human cancers: initial evidence of an oncogenic role

    Get PDF
    Background: Polycomb group (PcG) proteins are histone modifiers known to transcriptionally silence key tumour suppressor genes in multiple human cancers. The chromobox proteins (CBX2, 4, 6, 7, and 8) are critical components of PcG-mediated repression. Four of them have been associated with tumour biology, but the role of CBX2 in cancer remains largely uncharacterised. Methods: Addressing this issue, we conducted a comprehensive and unbiased genotranscriptomic meta-analysis of CBX2 in human cancers using the COSMIC and Oncomine databases. Results: We discovered changes in gene expression that are suggestive of a widespread oncogenic role for CBX2. Our genetic analysis of 8013 tumours spanning 29 tissue types revealed no inactivating chromosomal aberrations and only 40 point mutations at the CBX2 locus. In contrast, the overall rate of CBX2 amplification averaged 10% in all combined neoplasms but exceeded 30% in ovarian, breast, and lung tumours. In addition, transcriptomic analyses revealed a strong tendency for increased CBX2 mRNA levels in many cancers compared with normal tissues, independently of CDKN2A/B silencing. Furthermore, CBX2 upregulation and amplification significantly correlated with metastatic progression and lower overall survival in many cancer types, particularly those of the breast. Conclusions: Overall, we report that the molecular profile of CBX2 is suggestive of an oncogenic role. As CBX2 has never been studied in human neoplasms, our results provide the rationale to further investigate the function of CBX2 in the context of cancer cells

    The gene teashirt is required for the development of Drosophila embryonic trunk segments and encodes a protein with widely spaced zinc finger motifs

    No full text
    International audienceWe have discovered a reporter gene insertion that is expressed in the trunk region of Drosophila embryos. Genetic and molecular details of a new regulatory gene neighboring the reporter gene insertion, which we call teashirt (tsh), are described. In situ hybridization of a tsh probe to embryos shows that this gene is expressed in a way similar to the reporter gene. Mutations of tsh show that the gene is required for normal development of the ventral trunk region of embryos, which correlates with the spatial expression of the gene in the anteroposterior axis but not in the dorsoventral axis. Sequencing of a tsh cDNA shows that the putative protein possesses three distantly spaced CX2CX12HX5H zinc finger motifs

    Teashirt 3 is necessary for ureteral smooth muscle differentiation downstream of SHH and BMP4. Development 135: 3301–3310

    No full text
    Ureteric contractions propel foetal urine from the kidney to the urinary bladder. Here, we show that mouse ureteric smooth muscle cell (SMC) precursors express the transcription factor teashirt 3 (TSHZ3), and that Tshz3-null mutant mice have congenital hydronephrosis without anatomical obstruction. Ex vivo, the spontaneous contractions that occurred in proximal segments of wildtype embryonic ureter explants were absent in Tshz3 mutant ureters. In vivo, prior to the onset of hydronephrosis, mutant proximal ureters failed to express contractile SMC markers, whereas these molecules were detected in controls. Mutant embryonic ureters expressed Shh and Bmp4 transcripts as normal, with appropriate expression of Ptch1 and pSMAD1/5/8 in target SM precursors, whereas myocardin, a key regulator for SMC differentiation, was not expressed in Tshz3-null ureters. In wild-type embryonic renal tract explants, exogenous BMP4 upregulated Tshz3 and myocardin expression. More interestingly, in Tshz3 mutant renal tract explants, exogenous BMP4 did not improve the Tshz3 phenotype. Thus, Tshz3 is required for proximal ureteric SMC differentiation downstream of SHH and BMP4. Furthermore, the Tshz3 mutant mouse model of ‘functional ’ urinary obstruction resembles congenital pelvi-ureteric junction obstruction, a common human malformation, suggesting that TSHZ, or related, gene variants may contribute to this disorder

    miR-7a regulation of Pax6 controls spatial origin of forebrain dopaminergic neurons.

    No full text
    International audienceIn the postnatal and adult mouse forebrain, a mosaic of spatially separated neural stem cells along the lateral wall of the ventricles generates defined types of olfactory bulb neurons. To understand the mechanisms underlying the regionalization of the stem cell pool, we focused on the transcription factor Pax6, a determinant of the dopaminergic phenotype in this system. We found that, although Pax6 mRNA was transcribed widely along the ventricular walls, Pax6 protein was restricted to the dorsal aspect. This dorsal restriction was a result of inhibition of protein expression by miR-7a, a microRNA (miRNA) that was expressed in a gradient opposing Pax6. In vivo inhibition of miR-7a in Pax6-negative regions of the lateral wall induced Pax6 protein expression and increased dopaminergic neurons in the olfactory bulb. These findings establish miRNA-mediated fine-tuning of protein expression as a mechanism for controlling neuronal stem cell diversity and, consequently, neuronal phenotype
    corecore