11 research outputs found

    Protecting a Graph with Mobile Guards

    Full text link
    Mobile guards on the vertices of a graph are used to defend it against attacks on either its vertices or its edges. Various models for this problem have been proposed. In this survey we describe a number of these models with particular attention to the case when the attack sequence is infinitely long and the guards must induce some particular configuration before each attack, such as a dominating set or a vertex cover. Results from the literature concerning the number of guards needed to successfully defend a graph in each of these problems are surveyed.Comment: 29 pages, two figures, surve

    Enumerating the Digitally Convex Sets of Powers of Cycles and Cartesian Products of Paths and Complete Graphs

    Full text link
    Given a finite set VV, a convexity C\mathscr{C}, is a collection of subsets of VV that contains both the empty set and the set VV and is closed under intersections. The elements of C\mathscr{C} are called convex sets. The digital convexity, originally proposed as a tool for processing digital images, is defined as follows: a subset S⊆V(G)S\subseteq V(G) is digitally convex if, for every v∈V(G)v\in V(G), we have N[v]⊆N[S]N[v]\subseteq N[S] implies v∈Sv\in S. The number of cyclic binary strings with blocks of length at least kk is expressed as a linear recurrence relation for k≥2k\geq 2. A bijection is established between these cyclic binary strings and the digitally convex sets of the (k−1)th(k-1)^{th} power of a cycle. A closed formula for the number of digitally convex sets of the Cartesian product of two complete graphs is derived. A bijection is established between the digitally convex sets of the Cartesian product of two paths, Pn□PmP_n \square P_m, and certain types of n×mn \times m binary arrays.Comment: 16 pages, 3 figures, 1 tabl

    Vertices contained in all or in no minimum total dominating set of a tree

    Get PDF
    AbstractA set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. We characterize the set of vertices of a tree that are contained in all, or in no, minimum total dominating sets of the tree

    On the domination number of prisms of graphs

    Full text link

    Block Graphs with Large Paired Domination Multisubdivision Number

    No full text
    The paired domination multisubdivision number of a nonempty graph G, denoted by msdpr(G), is the smallest positive integer k such that there exists an edge which must be subdivided k times to increase the paired domination number of G. It is known that msdpr(G) ≤ 4 for all graphs G. We characterize block graphs with msdpr(G) = 4

    Block Graphs with Large Paired Domination Multisubdivision Number

    No full text
    The paired domination multisubdivision number of a nonempty graph G, denoted by msdpr(G), is the smallest positive integer k such that there exists an edge which must be subdivided k times to increase the paired domination number of G. It is known that msdpr(G) ≤ 4 for all graphs G. We characterize block graphs with msdpr(G) = 4

    Triangle Decompositions of Planar Graphs

    No full text
    A multigraph G is triangle decomposable if its edge set can be partitioned into subsets, each of which induces a triangle of G, and rationally triangle decomposable if its triangles can be assigned rational weights such that for each edge e of G, the sum of the weights of the triangles that contain e equals 1

    Triangle Decompositions of Planar Graphs

    No full text
    A multigraph G is triangle decomposable if its edge set can be partitioned into subsets, each of which induces a triangle of G, and rationally triangle decomposable if its triangles can be assigned rational weights such that for each edge e of G, the sum of the weights of the triangles that contain e equals 1. We present a necessary and sufficient condition for a planar multigraph to be triangle decomposable. We also show that if a simple planar graph is rationally triangle decomposable, then it has such a decomposition using only weights 0, 1 and 1/2 . This result provides a characterization of rationally triangle decomposable simple planar graphs. Finally, if G is a multigraph with K4 as underlying graph, we give necessary and sufficient conditions on the multiplicities of its edges for G to be triangle and rationally triangle decomposable
    corecore