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Abstract

A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent
to some vertex in S. We characterize the set of vertices of a tree that are contained in all, or in
no, minimum total dominating sets of the tree.
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1. Introduction

Let G= (V; E) be a simple undirected graph with |V |= n. The open neighborhood
of v∈V is N (v) = {u∈V | uv∈E}. A set S ⊆V is a dominating set of G if every
vertex in V − S is adjacent to a vertex of S. The domination number 
(G) is the
minimum cardinality of a dominating set of G. A set S ⊆V is a total dominating set,
abbreviated TDS, of G if every vertex in V is adjacent to a vertex in S. Every graph
without isolated vertices has a TDS, since S =V is such a set. The total domination
number of G, denoted by 
t(G), is the minimum cardinality of a TDS. A TDS of
cardinality 
t(G) is called a 
t(G)-set.
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Total domination was introduced by Cockayne et al. [2] and is studied, for example, in
[3,7]. For a survey of domination and its variations, see the books by Haynes et al. [5,6].

Mynhardt [8] characterized the set of vertices that are contained in all, or in no,
minimum dominating sets of a tree. Hammer et al. [4] investigated vertices belonging
to all or to no maximum stable sets of a graph. In this paper we characterize the set
of vertices of a tree T that are contained in all, or in no, 
t(T )-sets.

1.1. Notation

For notation and graph theory terminology we in general follow Chartrand and
Lesniak [1]. In particular, we denote the distance between two vertices u and v by
d(u; v). The degree of a vertex v is a graph G is denoted by degG v, or simply by deg v
if the graph G is clear from context. The diameter of a graph G is denoted by diam(G).
A path on n vertices is denoted by Pn.

We deEne the sets At(G) and Nt(G) of a graph G by

At(G) = {v∈V (G) | v is in every 
t(G)-set}; and

Nt(G) = {v∈V (G) | v is in no 
t(G)-set}:
For ease of presentation, we mostly consider rooted trees. For a vertex v in a (rooted)

tree T , we let C(v) and D(v) denote the set of children and descendants, respectively,
of v. The maximal subtree at v is the subtree of T induced by D(v)∪{v}, and is
denoted by Tv. A leaf of T is a vertex of degree 1, while a support vertex of T is
a vertex adjacent to a leaf. The set of leaves in T is denoted by L(T ) and the set of
support vertices by S(T ). A strong support vertex is adjacent to at least two leaves.
The set of leaves in Tv distinct from v we denote by L(v), i.e., L(v) =D(v)∩L(T ).
We deEne a branch vertex as a vertex of degree at least 3. The set of branch vertices
of T is denoted by B(T ). For j= 0; 1; 2; 3, we deEne

Lj(v) = {u∈L(v) |d(u; v)≡ j (mod 4)}:
We sometimes write LjT (v) to emphasize the tree (or subtree) concerned.

2. Tree pruning

We next describe a technique called tree pruning, which will allow us to characterize
the sets At(T ) and Nt(T ) for an arbitrary tree T . Given a vertex u of T , we say we
attach a path of length q to u if we join u to a leaf of the path Pq.

Let v be a vertex of T that is not a support vertex. The pruning of T is performed
with respect to the root. Hence suppose T is rooted at v, i.e., T=Tv. If deg u62 for
each u∈V (Tv)−{v}, then let HTv =T . Otherwise, let u be a branch vertex at maximum
distance from v; note that |C(u)|¿2 and deg x62 for each x∈D(u). We now apply
the following pruning process:

• If |L2(u)|¿1, then delete D(u) and attach a path of length 2 to u.
• If |L1(u)|¿1, L2(u) = ∅ and |L3(u)|¿1, then delete D(u) and attach a path of length 2

to u.
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Fig. 1. The pruning HTv of the tree Tv.

• If |L1(u)|¿1 and L2(u) =L3(u) = ∅, then delete D(u) and attach a path of length 1
to u.

• If L1(u) =L2(u) = ∅ and |L3(u)|¿1, then delete D(u) and attach a path of length 3
to u.

• If L1(u) =L2(u) =L3(u) = ∅, then delete D(u) and attach a path of length 4 to u.

This step of the pruning process, where all the descendants of u are deleted and a
path of length 1, 2, 3, or 4 is attached to u to give a tree in which u has degree 2, is
called a pruning of Tv at u. Repeat the above process until a tree HTv is obtained with
deg u62 for each u∈V ( HTv) − {v}. The tree HTv is unique and is called the pruning of
Tv. To simplify notation, we write HLj(v) instead of LjHTv(v).

To illustrate the pruning process, consider the tree T in Fig. 1. The vertices u and w
are branch vertices at maximum distance 2 from v. Since |L2(u)|= 1, we delete D(u)
and attach a path of length 2 to u. Since |L1(w)|= 2 and L2(w) =L3(w) = ∅, we delete
D(w) and attach a path of length 1 to w. This pruning of Tv at u and w produces
the intermediate tree as shown in Fig. 1. In this tree, the vertices x and y are branch
vertices at maximum distance 1 from v. Since |L2(x)|= 1, we delete D(x) and attach a
path of length 2 to x. Since |L1(y)|= 1, L2(y) = ∅ and |L3(y)|= 1, we delete D(y) and
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attach a path of length 2 to y. This pruning of Tv at x and y produces the pruning HTv
of Tv.

We shall prove:

Theorem 1. Let T be a tree rooted at a vertex v such that deg u62 for each
u∈V (T ) − {v}. Then
(a) v∈At(T ) if and only if v is a support vertex or |L1(v)∪L2(v)|¿2;
(b) v∈Nt(T ) if and only if L1(v)∪L2(v) = ∅.

Theorem 2. Let v be a vertex of a tree T . Then

(a) v∈At(T ) if and only if v is a support vertex or | HL1(v)∪ HL2(v)|¿2;
(b) v∈Nt(T ) if and only if HL1(v)∪ HL2(v) = ∅.

To illustrate Theorem 2, note that in the pruning HTv of the tree T in Fig. 1,
| HL0(v)|= | HL1(v)|= 0, | HL2(v)|= 1 and | HL3(v)|= 3; that is, | HL1(v)∪ HL2(v)|= 1. Hence, by
Theorem 2, v =∈At(T )∪Nt(T ).

3. Preliminary results

We begin with an elementary fact about total dominating sets of the path Pn.

Fact 3. For n¿2, 
t(Pn) = n=2 if n≡ 0 (mod 4), 
t(Pn) = (n+2)=2 if n≡ 2 (mod 4), and

t(Pn) = (n + 1)=2 otherwise. Furthermore, there is a 
t(Pn)-set that contains one of
its end-vertices if and only if n≡ 2 or 3 (mod 4).

We also need the following result.

Fact 4. Any TDS of a tree T contains every support vertex of T . Moreover, if
diam (T )¿3, there is a minimum TDS which contains no leaf.

Proof. Every leaf is uniquely dominated by the support vertex adjacent to it, and so
any TDS contains every support vertex. Suppose diam(T )¿3 and let D be a 
t(T )-set
that contains as few leaves as possible. Suppose D contains a leaf w. Let v be the
support vertex adjacent to w and let u be a neighbor of v of degree at least 2. Then
(D−{w})∪{u} is a 
t(T )-set containing fewer leaves than D, a contradiction. Hence
D contains no leaf.

Lemma 5. Let T ′ be a tree with v∈V (T ′). Let u′ be a vertex of T ′ that has a
neighbor distinct from v (possibly, u′= v). Let T be the tree obtained from T ′ by
attaching a path of length 4 to u′. Then

(a) 
t(T ) = 
t(T ′) + 2;
(b) v∈At(T ′) if and only if v∈At(T );
(c) v∈Nt(T ′) if and only if v∈Nt(T ).
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Proof. Suppose T is obtained from T ′ by adding the path u; w; x; y and the edge uu′.
(a) Any 
t(T ′)-set can be extended to a TDS of T by adding the set {w; x}, and so


t(T )6
t(T ′) + 2. Now let D be a 
t(T )-set and let D′=D∩V (T ′). By Fact 4, we
can choose D to contain no leaf, and so {w; x}⊂D. Furthermore, we may assume that
u =∈D, for otherwise we may replace it by a vertex in N (u′)− {u} (since D is a TDS
of T , such a vertex is necessarily adjacent to a vertex of D). Hence D′ is a TDS of
T ′, and so 
t(T ′)6|D′|= 
t(T ) − 2.

(b) Suppose that v =∈At(T ′). Let S ′ be a 
t(T ′)-set that does not contain v. Then
S = S ′ ∪{w; x} is a TDS of T of cardinality |S ′|+2 = 
t(T ), and so S is a 
t(T )-set that
does not contain v. Hence v =∈At(T ). Conversely, suppose that v∈At(T ′). Let D be an
arbitrary 
t(T )-set and let D′=D∩V (T ′). By Fact 4, x∈D. The set D contains exactly
one of w and y. If u =∈D, then D′ is a TDS of T ′ of cardinality 
t(T ) − 2 = 
t(T ′),
and so D′ is a 
t(T ′)-set. Since v∈At(T ′), v∈D′⊂D. If u∈D, then |D′|= |D| − 3.
By our choice of u′; u′ has a neighbor u∗ in T ′ distinct from v. Now, D′∪{u∗} is a
TDS of T ′ and |D′|+ 1¿|D′∪{u∗}|¿
(T ′) = |D| − 2 = |D′|+ 1, hence D′∪{u∗} is a

t(T ′)-set. Since v∈At(T ′) and v 
= u∗, v∈D′⊂D. Hence v∈At(T ).

(c) Suppose v =∈Nt(T ′). Let S ′ be a 
t(T ′)-set that contains v. Then S = S ′ ∪{w; x}
is a 
t(T )-set that contains v, and so v =∈Nt(T ). Conversely, suppose v∈Nt(T ′). Let D
be an arbitrary 
t(T )-set and let D′=D∩V (T ′). Using the notation introduced above,
D′ or D′∪{u∗} is a 
t(T ′)-set. Since v∈Nt(T ′), v =∈D′ and so v =∈D.

4. Proof of Theorem 1

If v is a support vertex, then Theorem 1 holds by Fact 4. Hence we may assume
that v is not a support vertex of T .

Suppose L(v) =L0(v) and T ′ is a path P5 containing v as a leaf. Then L1(v)∪
L2(v) = ∅. By repeated applications of Lemma 5 it follows that v∈At(T ) (Nt(T ),
respectively), if and only if v∈At(T ′) (Nt(T ′), respectively). The result now follows
from Fact 3. Hence we may assume that L(v) 
=L0(v).

For each w∈L(v), let T ∗ be the tree obtained by replacing the v–w path in T with
a v–w path of length j, j= 0; 5; 2; 3 if w∈Li(v); i= 0; 1; 2; 3, respectively. By repeated
applications of Lemma 5 it now follows that v∈At(T ) (Nt(T ), respectively) if and
only if v∈At(T ∗) (Nt(T ∗), respectively). If v is a leaf of T ∗, then T ∗ is a path of
order n¿3, so |L1(v)∪L2(v)|61 and the result follows from Facts 3 and 4. Hence we
may assume that v is not a leaf.

To prove Theorem 1 we may therefore assume without loss of generality that
deg v¿2 and every leaf of T is at distance 2, 3, or 5 from v. We consider the following
cases.
Case 1: |L2(v)|= 1, L1(v) = ∅.
Let u be the leaf at distance 2 from v. Then every leaf distinct from u is at dis-

tance 3 from v, i.e., L3(v) =L(v) − {u}. Since any 
t(T )-set contains every support
vertex and at least one neighbor of every support vertex, 
t(T )¿2|L(v)|. On the other
hand, D∗= S(T )∪L(T ) is a TDS of T of cardinality 2|L(v)|, and so 
t(T ) = 2|L(v)|.
Moreover, D∗ and (D∗ − {u})∪{v} are 
t(T )-sets that show that v =∈At(T )∪Nt(T ).
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Case 2: |L1(v)|= 1, L2(v) = ∅.
Let u be the leaf at distance 5 from v in T , and let v; u1; u2; : : : ; u4; u be the v–u path.

Every leaf distinct from u is at distance 3 from v. Any TDS in T contains at least three
vertices on the v–u path and at least two vertices distinct from v on any other path
from v to a leaf. Hence 
t(T )¿1 + 2|L(v)|. On the other hand, D∗= S(T )∪ (C(v) −
{u1})∪{u2; u3} is a TDS of T of cardinality 1 + 2|L(v)|, and so 
t(T ) = 1 + 2|L(v)|.
Moreover, D∗ and (D∗ −{u2})∪{v} are 
t(T )-sets that show that v =∈At(T )∪Nt(T ).

Case 3: |L1(v)|= |L2(v)|= 0.
Then every leaf is at distance 3 from v. It is easy to see that any TDS in T contains
exactly two vertices distinct from v on every path from v to a leaf, and that no 
t(T )-set
contains v. Hence v∈Nt(T ) (and obviously v =∈At(T )).

In what follows, let D denote an arbitrary 
t(T )-set.
Case 4: |L2(v)|¿2.

Let u and w be two leaves at distance 2 from v in T , with u′ and w′ the sup-
port vertices adjacent to u and w, respectively. If v =∈D, then {u; u′; w; w′}⊆D and so
(D−{u; w})∪{v} is a TDS of T of cardinality 
t(T )− 1, which is impossible. Hence
v∈D and thus v∈At(T ).
Case 5: |L2(v)|= 1, |L1(v)|¿1.

Let u with N (u) = {u′} be the leaf at distance 2 from v. Let w be a leaf at distance 5
from v with v; w1; w2; : : : ; w4; w the v–w path. If v =∈D, then {u; u′; w2; w3; w4}⊆D, and
so (D − {u; w2})∪{v} is a TDS of T of cardinality 
t(T ) − 1, which is impossible.
Hence v∈D and thus v∈At(T ).
Case 6: |L2(v)|= 0, |L1(v)|¿2.

Let u and w be two leaves at distance 5 from v in T with Pu : v; u1; u2; : : : ; u4; u
and Pw : v; w1; w2; : : : ; w4; w the v–u and v–w paths, respectively. For i∈{u; w}, de-
Ene Di =V (Pi)∩D. If v =∈D, then {u2; w2}⊆D to dominate {u1; w1}. Hence |Di|¿3.
But then (since D dominates v) D′= (D− (D1 ∪D2))∪{v; u3; u4; w3; w4} is a TDS with
|D′|¡
t(T ), a contradiction. Thus v∈At(T ).

Since these cases exhaust all possibilities, the proof of Theorem 1 is complete.

5. Proof of Theorem 2

Theorem 2 is an immediate consequence of Theorem 1, Lemma 5 and the following
lemma.

Lemma 6. Consider a path P in a tree T1 with L(P)⊆L(T1), w∈V (P)∪B(T1) and
v∈V (T1) − V (P). For a set (to be de?ned) X ⊂V (P) − {w}, let T2 =T1 − X . If

(i) P= u; w; x, X= {x} and v is not a leaf adjacent to w,
(ii) P= u; w; x; y, where degT1x= 2, and X= {u},
(iii) P= t; u; w; x; y, where degT1u= degT1x= 2, and X= {t; u},
(iv) P= t; u; w; x; y; z, where degT1u= degT1x= degT1 y= 2, and X= {x; y; z},
(v) P= u; w; x; y; z, where degT1x= degT1 y= 2, and X= {u; z},
(vi) P= s; t; u; w; x; y; z, where degT1 i= 2 for i∈{t; u; x; y}, and X= {x; y; z},
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then

(a) 
t(T2) =





t(T1) for (i) and (ii);


t(T1) − 1 for (iii) and (v);


t(T1) − 2 for (iv) and (vi):
(b) v∈At(T1) if and only if v∈At(T2).
(c) v∈Nt(T1) if and only if v∈Nt(T2).

Proof. In each case the proof of (c) is similar to the proof of (b) and hence omitted.
(i) Note that any minimal TDS of T1 contains at most one of u and x. By Fact 4,

w∈At(T1)∩At(T2). Statements (a) and (b) now follow from the fact that any TDS
of T2 is a TDS of T1, and any minimal TDS of T1 corresponds to a minimal TDS of
T2, where we replace x with u if necessary.

(ii) (a) Let D1 be a 
t(T1)-set. By Fact 4, {w; x}⊆D1. Hence u =∈D1 and D1 is a TDS
of T2. Now let D2 be a 
t(T2)-set. By Fact 4, we can choose D2 so that {w; x}⊆D2.
Hence D2 is a TDS of T1 and the result follows.

(b) It is clear from the proof of (a) that At(T2)⊆At(T1). Suppose that v∈At(T1)
and let S2 be an arbitrary 
t(T2)-set. By Fact 4, x∈ S2. Since S2 contains exactly one
of w and y, S1= (S2 − {y})∪{w} is a TDS of T1 of cardinality |S2|= 
t(T2) = 
t(T1),
i.e. a 
t(T1)-set. Thus v∈ S1. Since v 
=w, v∈ S2 as required.

(iii) (a) It is easy to see that {u; w; x}⊆D1 for any 
t(T1)-set D1; hence D1 − {u}
is a TDS of T2. On the other hand, since any 
t(T2)-set D2 contains exactly one of w
and y, it is obvious that (D2 − {y})∪{w; u} is a TDS of T1 and the result follows.

(b) Suppose that v∈At(T2). Let D1 be a 
t(T1)-set; as above D1 −{u} is 
t(T2)-set.
Since v 
= u, v∈D1 and it follows that v∈At(T1). Conversely, suppose v∈At(T1) and
let S2 be any 
t(T2)-set. By Fact 4, x∈ S2. Since S2 contains exactly one of w and y,
S1= (S2 − {y})∪{u; w} is a 
t(T1)-set, hence v∈ S1. Now v =∈{u; w}, therefore v∈ S2

and so v∈At(T2).
(iv) (a) Let D1 be a 
t(T1)-set. By Fact 4, we can choose D1 with {u; w; x; y}⊆D1,

in which case D1 − {x; y} is a TDS of T2. On the other hand, if D2 is a 
t(T2)-set,
we can choose D2 so that {u; w}⊆D2. Then D2 ∪{x; y} is a TDS of T1 and the result
follows.

(b) Suppose v∈At(T2). By Fact 4, y∈D1 for any 
t(T1)-set D1; note that D1 also
contains exactly one of x and z. Hence D2 =D1 − {x; y; z} is a TDS of T2 of cardi-
nality |D1| − 2 = 
t(T2) and thus a 
t(T2)-set. Therefore v∈D2 and since v =∈{x; y; z},
v∈D1. On the other hand, if v =∈At(T2) and S2 is a 
t(T2)-set not containing v, then
S1= S2 ∪{x; y} is a 
t(T1)-set not containing v. Hence v =∈At(T1).

(v) (a) By Fact 4 we can choose a 
t(T1)-set D1 with {w; x; y}⊆D1. Then D1−{y}
is a TDS of T2. Similarly, we can choose a 
t(T2)-set D2 with {x; w}⊆D2. Hence
D2 ∪{y} is a TDS of T1.

(b) Suppose v∈At(T2). Any 
t(T1)-set D1 contains {w; y} and exactly one of x and
z. Hence D2 = (D1 − {y; z})∪{x} is a TDS of T2 of cardinality |D1| − 1 = 
t(T2) and
hence a 
t(T2)-set. Therefore v∈D2 and since v 
= x, v∈D1. Now suppose v∈At(T1).
Any 
t(T2)-set S2 contains x and exactly one of y and w. Thus S1= S2 ∪{w; y} is a
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TDS of T1 of cardinality |S2| + 1 = 
t(T1), i.e., a 
t(T1)-set. Since v∈At(T1), v∈ S1.
Since v =∈{w; y}, v∈ S2 as required.

(vi) (a) We can choose a 
t(T1)-set D1 such that {t; u; x; y}⊆D1 and D1 −{x; y} is
a TDS of T2. Furthermore, any 
t(T2)-set can be extended to a TDS of T1 by adding
the set {x; y}.

(b) Suppose v∈At(T2). Any 
t(T1)-set D1 contains {t; y}, exactly one of x and
z and exactly one of u and s, so D2 = (D1 − {s; x; y; z})∪{u} is a TDS of T2 of
cardinality |D1| − 2 = 
t(T2), i.e., a 
t(T2)-set. Thus v∈D2. Since v 
= u, v∈D1. On the
other hand, if v =∈At(T2) and S2 is a 
t(T2)-set not containing v, then S1= S2 ∪{x; y}
is a 
t(T1)-set not containing v. Hence v =∈At(T1).
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