

Discrete Mathematics 260 (2003) 37-44

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Vertices contained in all or in no minimum total dominating set of a tree

Ernest J. Cockayne^{a,1}, Michael A. Henning^{b,*,2}, Christina M. Mynhardt^{c,3}

^aDepartment of Mathematics, University of Victoria, P.O. Box 3045, Victoria, BC, Canada V8W 3P4 ^bSchool of Mathematics, Statistics and Information Technology, University of Natal, Private Bay X01, Pietermaritzburg 3209, South Africa

^cDepartment of Mathematics, University of South Africa, P.O. Box 392, Unisa 0003, South Africa

Received 22 May 2001; received in revised form 4 January 2002; accepted 14 January 2002

Abstract

A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. We characterize the set of vertices of a tree that are contained in all, or in no, minimum total dominating sets of the tree.

© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Total domination; Total domination number; Tree

1. Introduction

Let G = (V, E) be a simple undirected graph with |V| = n. The open neighborhood of $v \in V$ is $N(v) = \{u \in V \mid uv \in E\}$. A set $S \subseteq V$ is a dominating set of G if every vertex in V - S is adjacent to a vertex of S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. A set $S \subseteq V$ is a total dominating set, abbreviated TDS, of G if every vertex in V is adjacent to a vertex in S. Every graph without isolated vertices has a TDS, since S = V is such a set. The total domination number of G, denoted by $\gamma_t(G)$, is the minimum cardinality of a TDS. A TDS of cardinality $\gamma_t(G)$ is called a $\gamma_t(G)$ -set.

0012-365X/03/\$ - see front matter C 2002 Elsevier Science B.V. All rights reserved. PII: \$0012-365X(02)00447-8

^{*} Corresponding author.

E-mail address: henning@nu.ac.za (M.A. Henning).

¹ This paper was written while visiting the Department of Mathematics, University of South Africa.

² Research supported by the South African National Research Foundation and the University of Natal.

 $^{^3\,\}text{Research}$ supported by the South African National Research Foundation and the University of South Africa.

Total domination was introduced by Cockayne et al. [2] and is studied, for example, in [3,7]. For a survey of domination and its variations, see the books by Haynes et al. [5,6].

Mynhardt [8] characterized the set of vertices that are contained in all, or in no, minimum dominating sets of a tree. Hammer et al. [4] investigated vertices belonging to all or to no maximum stable sets of a graph. In this paper we characterize the set of vertices of a tree T that are contained in all, or in no, $\gamma_t(T)$ -sets.

1.1. Notation

For notation and graph theory terminology we in general follow Chartrand and Lesniak [1]. In particular, we denote the distance between two vertices u and v by d(u, v). The degree of a vertex v is a graph G is denoted by $\deg_G v$, or simply by $\deg v$ if the graph G is clear from context. The diameter of a graph G is denoted by $\dim(G)$. A path on n vertices is denoted by P_n .

We define the sets $\mathscr{A}_{t}(G)$ and $\mathscr{N}_{t}(G)$ of a graph G by

$$\mathcal{A}_{\mathsf{t}}(G) = \{ v \in V(G) \mid v \text{ is in every } \gamma_{\mathsf{t}}(G) \text{-set} \}, \text{ and}$$
$$\mathcal{N}_{\mathsf{t}}(G) = \{ v \in V(G) \mid v \text{ is in no } \gamma_{\mathsf{t}}(G) \text{-set} \}.$$

For ease of presentation, we mostly consider *rooted trees*. For a vertex v in a (rooted) tree T, we let C(v) and D(v) denote the set of children and descendants, respectively, of v. The maximal subtree at v is the subtree of T induced by $D(v) \cup \{v\}$, and is denoted by T_v . A *leaf* of T is a vertex of degree 1, while a *support vertex* of T is a vertex adjacent to a leaf. The set of leaves in T is denoted by L(T) and the set of support vertices by S(T). A *strong support vertex* is adjacent to at least two leaves. The set of leaves in T_v distinct from v we denote by L(v), i.e., $L(v) = D(v) \cap L(T)$. We define a *branch vertex* as a vertex of degree at least 3. The set of branch vertices of T is denoted by B(T). For j = 0, 1, 2, 3, we define

$$L^{j}(v) = \{ u \in L(v) \mid d(u, v) \equiv j \pmod{4} \}$$

We sometimes write $L_T^j(v)$ to emphasize the tree (or subtree) concerned.

2. Tree pruning

We next describe a technique called *tree pruning*, which will allow us to characterize the sets $\mathscr{A}_t(T)$ and $\mathscr{N}_t(T)$ for an arbitrary tree T. Given a vertex u of T, we say we *attach* a path of length q to u if we join u to a leaf of the path P_q .

Let v be a vertex of T that is not a support vertex. The pruning of T is performed with respect to the root. Hence suppose T is rooted at v, i.e., $T = T_v$. If deg $u \leq 2$ for each $u \in V(T_v) - \{v\}$, then let $\overline{T}_v = T$. Otherwise, let u be a branch vertex at maximum distance from v; note that $|C(u)| \geq 2$ and deg $x \leq 2$ for each $x \in D(u)$. We now apply the following pruning process:

- If $|L^2(u)| \ge 1$, then delete D(u) and attach a path of length 2 to u.
- If |L¹(u)|≥1, L²(u) = Ø and |L³(u)|≥1, then delete D(u) and attach a path of length 2 to u.

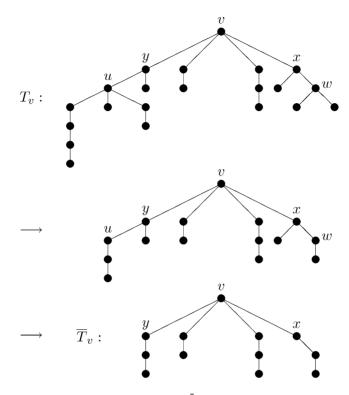


Fig. 1. The pruning \overline{T}_v of the tree T_v .

- If $|L^1(u)| \ge 1$ and $L^2(u) = L^3(u) = \emptyset$, then delete D(u) and attach a path of length 1 to u.
- If $L^1(u) = L^2(u) = \emptyset$ and $|L^3(u)| \ge 1$, then delete D(u) and attach a path of length 3 to u.
- If $L^1(u) = L^2(u) = L^3(u) = \emptyset$, then delete D(u) and attach a path of length 4 to u.

This step of the pruning process, where all the descendants of u are deleted and a path of length 1, 2, 3, or 4 is attached to u to give a tree in which u has degree 2, is called a *pruning of* T_v at u. Repeat the above process until a tree \overline{T}_v is obtained with deg $u \leq 2$ for each $u \in V(\overline{T}_v) - \{v\}$. The tree \overline{T}_v is unique and is called the *pruning* of T_v . To simplify notation, we write $\overline{L}^j(v)$ instead of $L_{\overline{T}}^j(v)$.

To illustrate the pruning process, consider the tree T in Fig. 1. The vertices u and w are branch vertices at maximum distance 2 from v. Since $|L^2(u)|=1$, we delete D(u) and attach a path of length 2 to u. Since $|L^1(w)|=2$ and $L^2(w)=L^3(w)=\emptyset$, we delete D(w) and attach a path of length 1 to w. This pruning of T_v at u and w produces the intermediate tree as shown in Fig. 1. In this tree, the vertices x and y are branch vertices at maximum distance 1 from v. Since $|L^2(x)|=1$, we delete D(x) and attach a path of length 2 to x. Since $|L^1(y)|=1$, $L^2(y)=\emptyset$ and $|L^3(y)|=1$, we delete D(y) and

attach a path of length 2 to y. This pruning of T_v at x and y produces the pruning \overline{T}_v of T_v .

We shall prove:

Theorem 1. Let T be a tree rooted at a vertex v such that $\deg u \leq 2$ for each $u \in V(T) - \{v\}$. Then

(a) $v \in \mathscr{A}_{t}(T)$ if and only if v is a support vertex or $|L^{1}(v) \cup L^{2}(v)| \ge 2$; (b) $v \in \mathscr{N}_{t}(T)$ if and only if $L^{1}(v) \cup L^{2}(v) = \emptyset$.

Theorem 2. Let v be a vertex of a tree T. Then

(a) $v \in \mathscr{A}_{t}(T)$ if and only if v is a support vertex or $|\bar{L}^{1}(v) \cup \bar{L}^{2}(v)| \ge 2$; (b) $v \in \mathscr{N}_{t}(T)$ if and only if $\bar{L}^{1}(v) \cup \bar{L}^{2}(v) = \emptyset$.

To illustrate Theorem 2, note that in the pruning \overline{T}_v of the tree T in Fig. 1, $|\overline{L}^0(v)| = |\overline{L}^1(v)| = 0$, $|\overline{L}^2(v)| = 1$ and $|\overline{L}^3(v)| = 3$; that is, $|\overline{L}^1(v) \cup \overline{L}^2(v)| = 1$. Hence, by Theorem 2, $v \notin \mathscr{A}_t(T) \cup \mathscr{N}_t(T)$.

3. Preliminary results

We begin with an elementary fact about total dominating sets of the path P_n .

Fact 3. For $n \ge 2$, $\gamma_t(P_n) = n/2$ if $n \equiv 0 \pmod{4}$, $\gamma_t(P_n) = (n+2)/2$ if $n \equiv 2 \pmod{4}$, and $\gamma_t(P_n) = (n+1)/2$ otherwise. Furthermore, there is a $\gamma_t(P_n)$ -set that contains one of its end-vertices if and only if $n \equiv 2$ or $3 \pmod{4}$.

We also need the following result.

Fact 4. Any TDS of a tree T contains every support vertex of T. Moreover, if diam $(T) \ge 3$, there is a minimum TDS which contains no leaf.

Proof. Every leaf is uniquely dominated by the support vertex adjacent to it, and so any TDS contains every support vertex. Suppose diam $(T) \ge 3$ and let *D* be a $\gamma_t(T)$ -set that contains as few leaves as possible. Suppose *D* contains a leaf *w*. Let *v* be the support vertex adjacent to *w* and let *u* be a neighbor of *v* of degree at least 2. Then $(D - \{w\}) \cup \{u\}$ is a $\gamma_t(T)$ -set containing fewer leaves than *D*, a contradiction. Hence *D* contains no leaf. \Box

Lemma 5. Let T' be a tree with $v \in V(T')$. Let u' be a vertex of T' that has a neighbor distinct from v (possibly, u'=v). Let T be the tree obtained from T' by attaching a path of length 4 to u'. Then

(a) $\gamma_t(T) = \gamma_t(T') + 2;$

(b) $v \in \mathscr{A}_{t}(T')$ if and only if $v \in \mathscr{A}_{t}(T)$;

(c) $v \in \mathcal{N}_{t}(T')$ if and only if $v \in \mathcal{N}_{t}(T)$.

40

Proof. Suppose T is obtained from T' by adding the path u, w, x, y and the edge uu'. (a) Any $\gamma_t(T')$ -set can be extended to a TDS of T by adding the set $\{w, x\}$, and so

 $\gamma_t(T) \leq \gamma_t(T') + 2$. Now let *D* be a $\gamma_t(T)$ -set and let $D' = D \cap V(T')$. By Fact 4, we can choose *D* to contain no leaf, and so $\{w, x\} \subset D$. Furthermore, we may assume that $u \notin D$, for otherwise we may replace it by a vertex in $N(u') - \{u\}$ (since *D* is a TDS of *T*, such a vertex is necessarily adjacent to a vertex of *D*). Hence *D'* is a TDS of *T'*, and so $\gamma_t(T') \leq |D'| = \gamma_t(T) - 2$.

(b) Suppose that $v \notin \mathscr{A}_t(T')$. Let S' be a $\gamma_t(T')$ -set that does not contain v. Then $S = S' \cup \{w, x\}$ is a TDS of T of cardinality $|S'| + 2 = \gamma_t(T)$, and so S is a $\gamma_t(T)$ -set that does not contain v. Hence $v \notin \mathscr{A}_t(T)$. Conversely, suppose that $v \in \mathscr{A}_t(T')$. Let D be an arbitrary $\gamma_t(T)$ -set and let $D' = D \cap V(T')$. By Fact 4, $x \in D$. The set D contains exactly one of w and y. If $u \notin D$, then D' is a TDS of T' of cardinality $\gamma_t(T) - 2 = \gamma_t(T')$, and so D' is a $\gamma_t(T')$ -set. Since $v \in \mathscr{A}_t(T')$, $v \in D' \subset D$. If $u \in D$, then |D'| = |D| - 3. By our choice of u', u' has a neighbor u* in T' distinct from v. Now, $D' \cup \{u^*\}$ is a TDS of T' and $|D'| + 1 \ge |D' \cup \{u^*\}| \ge \gamma(T') = |D| - 2 = |D'| + 1$, hence $D' \cup \{u^*\}$ is a $\gamma_t(T')$ -set. Since $v \in \mathscr{A}_t(T')$ and $v \ne u^*$, $v \in D' \subset D$. Hence $v \in \mathscr{A}_t(T)$.

(c) Suppose $v \notin \mathcal{N}_{t}(T')$. Let S' be a $\gamma_{t}(T')$ -set that contains v. Then $S = S' \cup \{w, x\}$ is a $\gamma_{t}(T)$ -set that contains v, and so $v \notin \mathcal{N}_{t}(T)$. Conversely, suppose $v \in \mathcal{N}_{t}(T')$. Let D be an arbitrary $\gamma_{t}(T)$ -set and let $D' = D \cap V(T')$. Using the notation introduced above, D' or $D' \cup \{u^*\}$ is a $\gamma_{t}(T')$ -set. Since $v \in \mathcal{N}_{t}(T')$, $v \notin D'$ and so $v \notin D$. \Box

4. Proof of Theorem 1

If v is a support vertex, then Theorem 1 holds by Fact 4. Hence we may assume that v is not a support vertex of T.

Suppose $L(v) = L^0(v)$ and T' is a path P_5 containing v as a leaf. Then $L^1(v) \cup L^2(v) = \emptyset$. By repeated applications of Lemma 5 it follows that $v \in \mathscr{A}_t(T)$ ($\mathscr{N}_t(T)$, respectively), if and only if $v \in \mathscr{A}_t(T')$ ($\mathscr{N}_t(T')$, respectively). The result now follows from Fact 3. Hence we may assume that $L(v) \neq L^0(v)$.

For each $w \in L(v)$, let T^* be the tree obtained by replacing the v-w path in T with a v-w path of length j, j = 0, 5, 2, 3 if $w \in L^i(v)$, i = 0, 1, 2, 3, respectively. By repeated applications of Lemma 5 it now follows that $v \in \mathscr{A}_t(T)$ ($\mathscr{N}_t(T)$, respectively) if and only if $v \in \mathscr{A}_t(T^*)$ ($\mathscr{N}_t(T^*)$, respectively). If v is a leaf of T^* , then T^* is a path of order $n \ge 3$, so $|L^1(v) \cup L^2(v)| \le 1$ and the result follows from Facts 3 and 4. Hence we may assume that v is not a leaf.

To prove Theorem 1 we may therefore assume without loss of generality that deg $v \ge 2$ and every leaf of T is at distance 2, 3, or 5 from v. We consider the following cases.

Case 1: $|L^2(v)| = 1$, $L^1(v) = \emptyset$.

Let *u* be the leaf at distance 2 from *v*. Then every leaf distinct from *u* is at distance 3 from *v*, i.e., $L^3(v) = L(v) - \{u\}$. Since any $\gamma_t(T)$ -set contains every support vertex and at least one neighbor of every support vertex, $\gamma_t(T) \ge 2|L(v)|$. On the other hand, $D^* = S(T) \cup L(T)$ is a TDS of *T* of cardinality 2|L(v)|, and so $\gamma_t(T) = 2|L(v)|$. Moreover, D^* and $(D^* - \{u\}) \cup \{v\}$ are $\gamma_t(T)$ -sets that show that $v \notin \mathscr{A}_t(T) \cup \mathscr{N}_t(T)$.

Case 2: $|L^1(v)| = 1$, $L^2(v) = \emptyset$.

Let *u* be the leaf at distance 5 from *v* in *T*, and let $v, u_1, u_2, ..., u_4, u$ be the v-u path. Every leaf distinct from *u* is at distance 3 from *v*. Any TDS in *T* contains at least three vertices on the v-u path and at least two vertices distinct from *v* on any other path from *v* to a leaf. Hence $\gamma_t(T) \ge 1 + 2|L(v)|$. On the other hand, $D^* = S(T) \cup (C(v) - \{u_1\}) \cup \{u_2, u_3\}$ is a TDS of *T* of cardinality 1 + 2|L(v)|, and so $\gamma_t(T) = 1 + 2|L(v)|$. Moreover, D^* and $(D^* - \{u_2\}) \cup \{v\}$ are $\gamma_t(T)$ -sets that show that $v \notin \mathscr{A}_t(T) \cup \mathscr{N}_t(T)$. *Case* 3: $|L^1(v)| = |L^2(v)| = 0$.

Then every leaf is at distance 3 from v. It is easy to see that any TDS in T contains exactly two vertices distinct from v on every path from v to a leaf, and that no $\gamma_t(T)$ -set contains v. Hence $v \in \mathcal{N}_t(T)$ (and obviously $v \notin \mathcal{A}_t(T)$).

In what follows, let *D* denote an arbitrary $\gamma_t(T)$ -set. *Case* 4: $|L^2(v)| \ge 2$.

Let *u* and *w* be two leaves at distance 2 from *v* in *T*, with *u'* and *w'* the support vertices adjacent to *u* and *w*, respectively. If $v \notin D$, then $\{u, u', w, w'\} \subseteq D$ and so $(D - \{u, w\}) \cup \{v\}$ is a TDS of *T* of cardinality $\gamma_t(T) - 1$, which is impossible. Hence $v \in D$ and thus $v \in \mathcal{A}_t(T)$.

Case 5: $|L^2(v)| = 1$, $|L^1(v)| \ge 1$.

Let *u* with $N(u) = \{u'\}$ be the leaf at distance 2 from *v*. Let *w* be a leaf at distance 5 from *v* with $v, w_1, w_2, \ldots, w_4, w$ the *v*-*w* path. If $v \notin D$, then $\{u, u', w_2, w_3, w_4\} \subseteq D$, and so $(D - \{u, w_2\}) \cup \{v\}$ is a TDS of *T* of cardinality $\gamma_t(T) - 1$, which is impossible. Hence $v \in D$ and thus $v \in \mathcal{A}_t(T)$.

Case 6: $|L^2(v)| = 0$, $|L^1(v)| \ge 2$.

Let *u* and *w* be two leaves at distance 5 from *v* in *T* with $P_u:v, u_1, u_2, \ldots, u_4, u$ and $P_w:v, w_1, w_2, \ldots, w_4, w$ the *v*-*u* and *v*-*w* paths, respectively. For $i \in \{u, w\}$, define $D_i = V(P_i) \cap D$. If $v \notin D$, then $\{u_2, w_2\} \subseteq D$ to dominate $\{u_1, w_1\}$. Hence $|D_i| \ge 3$. But then (since *D* dominates *v*) $D' = (D - (D_1 \cup D_2)) \cup \{v, u_3, u_4, w_3, w_4\}$ is a TDS with $|D'| < \gamma_t(T)$, a contradiction. Thus $v \in \mathcal{A}_t(T)$.

Since these cases exhaust all possibilities, the proof of Theorem 1 is complete. \Box

5. Proof of Theorem 2

Theorem 2 is an immediate consequence of Theorem 1, Lemma 5 and the following lemma.

Lemma 6. Consider a path P in a tree T_1 with $L(P) \subseteq L(T_1)$, $w \in V(P) \cup B(T_1)$ and $v \in V(T_1) - V(P)$. For a set (to be defined) $X \subset V(P) - \{w\}$, let $T_2 = T_1 - X$. If

(i) $P = u, w, x, X = \{x\}$ and v is not a leaf adjacent to w,

(ii) P = u, w, x, y, where $\deg_T x = 2$, and $X = \{u\}$,

(iii) P = t, u, w, x, y, where $\deg_T u = \deg_T x = 2$, and $X = \{t, u\}$,

(iv) P = t, u, w, x, y, z, where $\deg_{T_1} u = \deg_{T_1} x = \deg_{T_1} y = 2$, and $X = \{x, y, z\}$,

(v) P = u, w, x, y, z, where $\deg_T x = \deg_T y = 2$, and $X = \{u, z\}$,

(vi) P = s, t, u, w, x, y, z, where $\deg_{T_1} i = 2$ for $i \in \{t, u, x, y\}$, and $X = \{x, y, z\}$,

then

(a)
$$\gamma_{t}(T_{2}) = \begin{cases} \gamma_{t}(T_{1}) & for (i) and (ii), \\ \gamma_{t}(T_{1}) - 1 & for (iii) and (v), \\ \gamma_{t}(T_{1}) - 2 & for (iv) and (vi). \end{cases}$$

(b) $v \in \mathscr{A}_{t}(T_{1})$ if and only if $v \in \mathscr{A}_{t}(T_{2}).$
(c) $v \in \mathscr{N}_{t}(T_{1})$ if and only if $v \in \mathscr{N}_{t}(T_{2}).$

Proof. In each case the proof of (c) is similar to the proof of (b) and hence omitted.

(i) Note that any minimal TDS of T_1 contains at most one of u and x. By Fact 4, $w \in \mathscr{A}_t(T_1) \cap \mathscr{A}_t(T_2)$. Statements (a) and (b) now follow from the fact that any TDS of T_2 is a TDS of T_1 , and any minimal TDS of T_1 corresponds to a minimal TDS of T_2 , where we replace x with u if necessary.

(ii) (a) Let D_1 be a $\gamma_t(T_1)$ -set. By Fact 4, $\{w, x\} \subseteq D_1$. Hence $u \notin D_1$ and D_1 is a TDS of T_2 . Now let D_2 be a $\gamma_t(T_2)$ -set. By Fact 4, we can choose D_2 so that $\{w, x\} \subseteq D_2$. Hence D_2 is a TDS of T_1 and the result follows.

(b) It is clear from the proof of (a) that $\mathscr{A}_{t}(T_{2}) \subseteq \mathscr{A}_{t}(T_{1})$. Suppose that $v \in \mathscr{A}_{t}(T_{1})$ and let S_{2} be an arbitrary $\gamma_{t}(T_{2})$ -set. By Fact 4, $x \in S_{2}$. Since S_{2} contains exactly one of w and y, $S_{1}=(S_{2}-\{y\})\cup\{w\}$ is a TDS of T_{1} of cardinality $|S_{2}|=\gamma_{t}(T_{2})=\gamma_{t}(T_{1})$, i.e. a $\gamma_{t}(T_{1})$ -set. Thus $v \in S_{1}$. Since $v \neq w$, $v \in S_{2}$ as required.

(iii) (a) It is easy to see that $\{u, w, x\} \subseteq D_1$ for any $\gamma_t(T_1)$ -set D_1 ; hence $D_1 - \{u\}$ is a TDS of T_2 . On the other hand, since any $\gamma_t(T_2)$ -set D_2 contains exactly one of w and y, it is obvious that $(D_2 - \{y\}) \cup \{w, u\}$ is a TDS of T_1 and the result follows.

(b) Suppose that $v \in \mathscr{A}_t(T_2)$. Let D_1 be a $\gamma_t(T_1)$ -set; as above $D_1 - \{u\}$ is $\gamma_t(T_2)$ -set. Since $v \neq u$, $v \in D_1$ and it follows that $v \in \mathscr{A}_t(T_1)$. Conversely, suppose $v \in \mathscr{A}_t(T_1)$ and let S_2 be any $\gamma_t(T_2)$ -set. By Fact 4, $x \in S_2$. Since S_2 contains exactly one of w and y, $S_1 = (S_2 - \{y\}) \cup \{u, w\}$ is a $\gamma_t(T_1)$ -set, hence $v \in S_1$. Now $v \notin \{u, w\}$, therefore $v \in S_2$ and so $v \in \mathscr{A}_t(T_2)$.

(iv) (a) Let D_1 be a $\gamma_t(T_1)$ -set. By Fact 4, we can choose D_1 with $\{u, w, x, y\} \subseteq D_1$, in which case $D_1 - \{x, y\}$ is a TDS of T_2 . On the other hand, if D_2 is a $\gamma_t(T_2)$ -set, we can choose D_2 so that $\{u, w\} \subseteq D_2$. Then $D_2 \cup \{x, y\}$ is a TDS of T_1 and the result follows.

(b) Suppose $v \in \mathcal{A}_t(T_2)$. By Fact 4, $y \in D_1$ for any $\gamma_t(T_1)$ -set D_1 ; note that D_1 also contains exactly one of x and z. Hence $D_2 = D_1 - \{x, y, z\}$ is a TDS of T_2 of cardinality $|D_1| - 2 = \gamma_t(T_2)$ and thus a $\gamma_t(T_2)$ -set. Therefore $v \in D_2$ and since $v \notin \{x, y, z\}$, $v \in D_1$. On the other hand, if $v \notin \mathcal{A}_t(T_2)$ and S_2 is a $\gamma_t(T_2)$ -set not containing v, then $S_1 = S_2 \cup \{x, y\}$ is a $\gamma_t(T_1)$ -set not containing v. Hence $v \notin \mathcal{A}_t(T_1)$.

(v) (a) By Fact 4 we can choose a $\gamma_t(T_1)$ -set D_1 with $\{w, x, y\} \subseteq D_1$. Then $D_1 - \{y\}$ is a TDS of T_2 . Similarly, we can choose a $\gamma_t(T_2)$ -set D_2 with $\{x, w\} \subseteq D_2$. Hence $D_2 \cup \{y\}$ is a TDS of T_1 .

(b) Suppose $v \in \mathscr{A}_t(T_2)$. Any $\gamma_t(T_1)$ -set D_1 contains $\{w, y\}$ and exactly one of x and z. Hence $D_2 = (D_1 - \{y, z\}) \cup \{x\}$ is a TDS of T_2 of cardinality $|D_1| - 1 = \gamma_t(T_2)$ and hence a $\gamma_t(T_2)$ -set. Therefore $v \in D_2$ and since $v \neq x$, $v \in D_1$. Now suppose $v \in \mathscr{A}_t(T_1)$. Any $\gamma_t(T_2)$ -set S_2 contains x and exactly one of y and w. Thus $S_1 = S_2 \cup \{w, y\}$ is a

TDS of T_1 of cardinality $|S_2| + 1 = \gamma_t(T_1)$, i.e., a $\gamma_t(T_1)$ -set. Since $v \in \mathscr{A}_t(T_1)$, $v \in S_1$. Since $v \notin \{w, y\}$, $v \in S_2$ as required.

(vi) (a) We can choose a $\gamma_t(T_1)$ -set D_1 such that $\{t, u, x, y\} \subseteq D_1$ and $D_1 - \{x, y\}$ is a TDS of T_2 . Furthermore, any $\gamma_t(T_2)$ -set can be extended to a TDS of T_1 by adding the set $\{x, y\}$.

(b) Suppose $v \in \mathscr{A}_t(T_2)$. Any $\gamma_t(T_1)$ -set D_1 contains $\{t, y\}$, exactly one of x and z and exactly one of u and s, so $D_2 = (D_1 - \{s, x, y, z\}) \cup \{u\}$ is a TDS of T_2 of cardinality $|D_1| - 2 = \gamma_t(T_2)$, i.e., a $\gamma_t(T_2)$ -set. Thus $v \in D_2$. Since $v \neq u$, $v \in D_1$. On the other hand, if $v \notin \mathscr{A}_t(T_2)$ and S_2 is a $\gamma_t(T_2)$ -set not containing v, then $S_1 = S_2 \cup \{x, y\}$ is a $\gamma_t(T_1)$ -set not containing v. Hence $v \notin \mathscr{A}_t(T_1)$. \Box

References

- [1] G. Chartrand, L. Lesniak, Graphs & Digraphs, Third Edition, Chapman & Hall, London, 1996.
- [2] E.J. Cockayne, R.M. Dawes, S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219.
- [3] O. Favaron, M.A. Henning, C.M. Mynhardt, J. Puech, Total domination in graphs with minimum degree three, J. Graph Theory 34(1) (2000) 9–19.
- [4] P.L. Hammer, P. Hansen, B. Simeone, Vertices belonging to all or to no maximum stable sets of a graph, SIAM J. Algebraic Discrete Math. 3(2) (1982) 511–522.
- [5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [6] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
- [7] M.A. Henning, Graphs with large total domination number, J. Graph Theory 35(1) (2000) 21-45.
- [8] C.M. Mynhardt, Vertices contained in every minimum dominating set of a tree, J. Graph Theory 31(3) (1999) 163–177.