2 research outputs found

    Adsorption of Nitrogen-Containing Compounds on the (100) α‑Quartz Surface: Ab Initio Cluster Approach

    No full text
    A cluster approach extended to the ONIOM methodology has been applied using several density functionals and Møller–Plesset perturbation theory (MP2) to simulate the adsorption of selected nitrogen-containing compounds [NCCs, 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), 2,4-dinitroanisole (DNAN), and 3-nitro-1,2,4-triazole-5-one (NTO)] on the hydroxyated (100) surface of α-quartz. The structural properties were calculated using the M06-2X functional and 6-31G­(d,p) basis set. The M06-2X-D3, PBE-D3, and MP2 methods were used to calculate the adsorption energies. Results have been compared with the data from other studies of adsorption of compounds of similar nature on silica. Effect of deformation of the silica surface and adsorbates on the binding energy values was also studied. The atoms in molecules (AIM) analysis was employed to characterize the adsorbate–adsorbent binding and to calculate the bond energies. The silica surface shows different sorption affinity toward the chemicals considered depending on their electronic structure. All target NCCs are physisorbed on the modeled silica surface. Adsorption occurs due to the formation of multiple hydrogen bonds between the functional groups of NCCs and surface silanol groups. Parallel orientation of NCCs interacting with the silica surface was found to be favorable when compared with perpendicularly oriented NCCs. NTO was found to be the most strongly adsorbed on the silica surface among all of the considered compounds. Dispersion correction was shown to play an important role in the DFT calculations of the adsorption energies of silica–NCC systems

    A new mechanism of post-transfer editing by aminoacyl-tRNA synthetases: catalysis of hydrolytic reaction by bacterial-type prolyl-tRNA synthetase

    No full text
    <p>Aminoacyl tRNA synthetases are enzymes that specifically attach amino acids to cognate tRNAs for use in the ribosomal stage of translation. For many aminoacyl tRNA synthetases, the required level of amino acid specificity is achieved either by specific hydrolysis of misactivated aminoacyl-adenylate intermediate (pre-transfer editing) or by hydrolysis of the mischarged aminoacyl-tRNA (post-transfer editing). To investigate the mechanism of post-transfer editing of alanine by prolyl-tRNA synthetase from the pathogenic bacteria <i>Enterococcus faecalis</i>, we used molecular modeling, molecular dynamic simulations, quantum mechanical (QM) calculations, site-directed mutagenesis of the enzyme, and tRNA modification. The results support a new tRNA-assisted mechanism of hydrolysis of misacylated Ala-tRNA<sup>Pro</sup>. The most important functional element of this catalytic mechanism is the 2′-OH group of the terminal adenosine 76 of Ala-tRNA<sup>Pro</sup>, which forms an intramolecular hydrogen bond with the carbonyl group of the alanine residue, strongly facilitating hydrolysis. Hydrolysis was shown by QM methods to proceed via a general acid-base catalysis mechanism involving two functionally distinct water molecules. The transition state of the reaction was identified. Amino acid residues of the editing active site participate in the coordination of substrate and both attacking and assisting water molecules, performing the proton transfer to the 3′-O atom of A76.</p
    corecore