2 research outputs found

    Graphene Oxide: A Versatile Agent for Polyimide Foams with Improved Foaming Capability and Enhanced Flexibility

    No full text
    Close-celled aromatic polyimide (PI)/graphene foams with low density and improved flexibility were fabricated by thermal foaming of poly­(amic ester)/graphene oxide (PAE/GO) precursor powders. The PAE/GO precursor powders were prepared by grafting GO nanosheets with PAE chains, which led to efficient dispersion of the GO nanosheets in PAE matrix. Incorporation of GO resulted in an enhanced foaming capability of the precursor, i.e., enlarged cell size and decreased foam density. Notably, a decrease of 50% in the foam density was obtained via the addition of only 2 wt % GO in the precursor. In the foaming process, the GO nanosheets functioned as a versatile agent that not only provided heterogeneous nucleation sites but also produced gaseous molecules. By analyzing the foaming mechanism, the excellent features of GO in heat transfer, gas barrier, and strength reinforcement also facilitated to obtain large and uniform cells in the foams. In addition, the PI/graphene foams exhibited a prominent flexibility and enhanced flexural strength, as an elastic-to-nonelastic conversion of the initial stage of the compressive stress–strain curves was observed by increasing the content of graphene in the PI matrix and an increase of 22.5% in flexural strength was obtained by addition of 0.5 wt % GO in the precursor

    Conjunction of Conducting Polymer Nanostructures with Macroporous Structured Graphene Thin Films for High-Performance Flexible Supercapacitors

    No full text
    Fabrication of hybridized structures is an effective strategy to promote the performances of graphene-based composites for energy storage/conversion applications. In this work, macroporous structured graphene thin films (MGTFs) are fabricated on various substrates including flexible graphene papers (GPs) through an ice-crystal-induced phase separation process. The MGTFs prepared on GPs (MGTF@GPs) are recognized with remarkable features such as interconnected macroporous configuration, sufficient exfoliation of the conductive RGO sheets, and good mechanical flexibility. As such, the flexible MGTF@GPs are demonstrated as a versatile conductive platform for depositing conducting polymers (CPs), e.g., polyaniline (PAn), polypyrrole, and polythiophene, through <i>in situ</i> electropolymerization. The contents of the CPs in the composite films are readily controlled by varying the electropolymerization time. Notably, electrodeposition of PAn leads to the formation of nanostructures of PAn nanofibers on the walls of the macroporous structured RGO framework (PAn@MGTF@GPs): thereafter, the PAn@MGTF@GPs display a unique structural feature that combine the nanostructures of PAn nanofibers and the macroporous structures of RGO sheets. Being used as binder-free electrodes for flexible supercapacitors, the PAn@MGTF@GPs exhibit excellent electrochemical performance, in particular a high areal specific capacity (538 mF cm<sup>–2</sup>), high cycling stability, and remarkable capacitive stability to deformation, due to the unique electrode structures
    corecore