15 research outputs found

    Implementation and Validation of Range Imaging on a UHF Radar Wind Profiler

    Get PDF
    The available range resolution of pulsed radar wind profilers is usually limited by bandwidth restrictions. Range imaging (RIM) has recently been developed as a means of mitigating these limitations by operating the wind profilers over a small set of distinct transmitter frequencies. A constrained optimization method can then be used to generate high-resolution maps of the reflectivity field as a function of range. This paper presents a description of how the RIM technique has been recently implemented on the Platteville 915-MHz tropospheric profiler, the first such implementation at UHF. Examples of data collected during a two-part experiment on 10 April 2001 using the Platteville 915-MHz tropospheric profiler are presented. In the first part, an intercomparison was made involving measurements from RIM and standard radar techniques. It is shown that available frequency bandwidth can be very effectively utilized through the RIM processing. In the second part of the experiment, RIM was applied to radar observations collected with a short (0.5 s) transmit pulse. The resulting data include observations of a thin, persistent scattering layer attributed to a subsidence inversion and billows from a Kelvin– Helmholtz instability. Estimates of the width of the layer were found to be as small as 12 m

    Evaluation of three lidar scanning strategies for turbulence measurements

    Get PDF
    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the <i>u</i>, <i>v</i>, and <i>w</i> velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.</br></br>Results indicate that the six-beam strategy mitigates some of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the <i>u</i> and <i>v</i> variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars

    A similarity theory of locally homogeneous and isotropic turbulence generated by a Smagorinsky-type LES

    Get PDF
    A Kolmogorov-type similarity theory of locally homogeneous and isotropic turbulence generated by a Smagorinsky-type large-eddy simulation (LES) at very large LES Reynolds numbers is developed and discussed. The underlying concept is that the LES equations may be considered equations of motion of specific hypothetical fully turbulent non-Newtonian fluids, called 'LES fluids'. It is shown that the length scale lS = cSΔ, which scales the magnitude of the variable viscosity in a Smagorinsky-type LES, is the 'Smagorinsky-fluid' counterpart of Kolmogorov's dissipation length η = ν3/4ε-1/4 for a Newtonian fluid where ν is the kinematic viscosity and ε is the energy dissipation rate. While in a Newtonian fluid the viscosity is a material parameter and the length η depends on ε, in a Smagorinsky fluid the length ls is a material parameter and the viscosity depends on ε. The Smagorinsky coefficient cS may be considered the reciprocal of a 'microstructure Knudsen number' of a Smagorinsky fluid. A combination of Lilly's (1967) cut-off model with two well-known spectral models for dissipation-range turbulence (Heisenberg 1948; Pao 1965) leads to models for the LES-generated Kolmogorov coefficient αLES as a function of cS. Both models predict an intrinsic overestimation of αLES for finite values of cS. For cS = 0.2 Heisenberg's and Pao's models provide αLES = 1.74 (16% overestimation) and αLES = 2.14 (43% overestimation), respectively, if limcS→∞(αLES) = 1.5 is ad hoc assumed. The predicted overestimation becomes negligible beyond about cS = 0.5. The requirement cS &gt; 0.5 is equivalent to Δ &lt; 2lS. A similar requirement, L &lt; 2η where L is the wire length of hot-wire anemometers, has been recommended by experimentalists. The value of limcS→∞(αLES) for a Smagorinsky-type LES at very large LES Reynolds numbers is not predicted by the models and remains unknown. Two critical values of cS are identified. The first critical cS is Lilly's (1967) value, which indicates the cS below which finite-difference-approximation errors become important; the second critical cS is the value beyond which the Reynolds number similarity is violated

    Implementation and Validation of Range Imaging on a UHF Radar Wind Profiler

    Get PDF
    The available range resolution of pulsed radar wind profilers is usually limited by bandwidth restrictions. Range imaging (RIM) has recently been developed as a means of mitigating these limitations by operating the wind profilers over a small set of distinct transmitter frequencies. A constrained optimization method can then be used to generate high-resolution maps of the reflectivity field as a function of range. This paper presents a description of how the RIM technique has been recently implemented on the Platteville 915-MHz tropospheric profiler, the first such implementation at UHF. Examples of data collected during a two-part experiment on 10 April 2001 using the Platteville 915-MHz tropospheric profiler are presented. In the first part, an intercomparison was made involving measurements from RIM and standard radar techniques. It is shown that available frequency bandwidth can be very effectively utilized through the RIM processing. In the second part of the experiment, RIM was applied to radar observations collected with a short (0.5 s) transmit pulse. The resulting data include observations of a thin, persistent scattering layer attributed to a subsidence inversion and billows from a Kelvin– Helmholtz instability. Estimates of the width of the layer were found to be as small as 12 m

    Angle-of-arrival anemometry by means of a large-aperture Schmidt-Cassegrain telescope equipped with a CCD camera

    No full text
    The frequency spectrum of angle-of-arrival (AOA) fluctuations of optical waves propagating through atmospheric turbulence carries information of wind speed transverse to the propagation path. We present the retrievals of the transverse wind speed, v b , from the AOA spectra measured with a Schmidt-Cassegrain telescope equipped with a CCD camera by estimating the &quot;knee frequency,&quot; the intersection of two power laws of the AOA spectrum. The rms difference between 30 s estimates of v b retrieved from the measured AOA spectra and 30 s averages of the transverse horizontal wind speed measured with an ultrasonic anemometer was 11 cm s −1 for a 1 h period, during which the transverse horizontal wind speed varied between 0 and 80 cm s −1 . Potential and limitations of angle-of-arrival anemometry are discusse

    METCRAX 2006 - Meteorological experiments in Arizona\u27s Meteor Crater

    No full text
    The Meteor Crater Experiment (METCRAX 2006) was conducted in October 2006 at Arizona\u27s Meteor Crater to investigate stable boundary layer evolution in a topographically uncomplicated basin surrounded by the nearly homogeneous plain of the Colorado Plateau. The two goals of the experiment were 1) to investigate the microscale and mesoscale structure and evolution of the stable boundary layer in the crater and its surroundings and 2) to determine whether atmospheric seiches or standing waves are produced inside the crater. This article provides an overview of the scientific goals of the experiment; summarizes the research measurements, the crater topography, and the synoptic meteorology of the study period; and presents initial analysis results. Analyses show that nighttime temperature inversions form frequently in the crater and that they are often perturbed by internal wave motions. Nighttime cooling produces a shallow (15–30 m deep) surface-based inversion that is surmounted by a horizontally homogeneous near-isothermal layer that extends all the way to the rim, where a second inversion extends above rim level. Seiches are sometimes present on the crater floor. The diurnal propagation of shadows from the crater rim produces important spatial differences in the surface radiation budget and thus the timing of the slope flow transition, and the crater atmosphere is often perturbed during nighttime by a southwesterly mesoscale drainage flow
    corecore