207 research outputs found
Improving angle stability by switching shunt reactors in mixed overhead cable lines. An Italian 400 kV case study
Stringent environmental constraints make the construction of new transmission overhead lines more and more difficult. Alternatively, today it is possible to use cable lines for high (HV) and extra-high (EHV) voltage systems. The configuration of the so-called mixed lines can create some problems in the operation of the electrical system, both during steady-state and transient conditions. In particular, the system stability is one of the main concerns when analyzing the dynamic response of power systems. In this paper, the study of angular stability of a system containing a mixed line is presented: a specific control logic applied to the shunt reactors of the mixed line is proposed as improvement of the overall system stability. The proposed switching logic is first discussed from a theoretical point of view and validated with two different testing systems. Then, the existing overhead-cable lines connecting Sicily to the rest of continental Europe 400 kV power system are taken as case study for the application of the proposed switching strategy. Several simulations are performed in the power system analysis software NEPLAN360: the results show the fundamental role of the timing of the control actions applied on the shunt reactors in helping the system to keep the stability. The proposed control proves to be an effective support to the system subjected to critical contingencies, contributing decisively to avoid the angular separation between areas and therefore to preserve the stability of the system
An original control strategy of storage systems for the frequency stability of autonomous grids with renewable power generation
This work examines the operation of the autonomous power system of a geographical island assuming the integration of significant generation shares from renewable energy sources and the installation of the required storage systems. The frequency stability of the system is investigated considering different operating conditions, in terms of load demand and renewable power generation. The main focus of the work is an original control strategy specifically designed for power converters interfacing storage units to the grid. The proposed strategy is based on an extended frequency droop control, which selects specific droop settings depending on the operating mode—charge or discharge—of the storage unit. A simulation model of the whole electrical system is developed for dynamic analysis. The model also implements the possibility of including specific auxiliary frequency controls for synthetic inertia and primary reserve. The results of the simulation and analysis indicate that the proposed control strategy has a significant positive effect, making the storage units able to provide a fundamental and more effective support to the frequency stability of the system. The application of the proposed control strategy to storage units also reduces the need for a contribution to the frequency control from intermittent and variable sources, making the whole system more robust, stable and reliable
Frequency Dynamics in Fully Non-Synchronous Electrical Grids: A Case Study of an Existing Island
The operation of a power system with 100% converter-interfaced generation poses several questions and challenges regarding various aspects of the design and the control of the system. Existing literature on the integration of renewable energy sources in isolated systems mainly focuses on energy aspects or steady-state issues, and only a few studies examine the dynamic issues of autonomous networks operated with fully non-synchronous generation. A lack of research can be found in particular in the determination of the required amount of grid-forming power, the selection of the number and rated power of the units which should implement the grid-forming controls, and the relative locations of the grid-forming converters. The paper aims to address those research gaps starting from a theoretical point of view and then by examining the actual electrical network of an existing island as a case study. The results obtained from the investigations indicate specific observations and design opportunities, which are essential for securing the synchronization and the stability of the grid. Possible solutions for a fully non-synchronous operation of autonomous systems, in terms of dynamic characteristics and frequency stability, are presented and discussed
A General Methodology for Short-circuit Calculations in Hybrid AC/DC Microgrids
In this paper, the issues related to short-circuit calculations in hybrid AC/DC microgrids are discussed. The reference standard for short-current calculations in DC systems is the IEC 61660, which provides a mathematical formulation of the problem. The standard only includes radial DC grids and does not consider a more complex system, such as meshed DC systems or a hybrid AC/DC microgrid. This paper proposes a generalized approach that can be used independently of the characteristics of the hybrid system. The proposed approach is applied to four test microgrids with different distributed sources and number of nodes and the results are compared with those obtained simulating the same grids with Neplan 360®
The Wide-Synchronization Control at Support of the Oscillatory Stability of Power Systems
The wide-synchronization control is a novel wide-area control involving inverter-based resources as actuators. The concept is based on the determination of a remote frequency signal, which can be used within the control systems of the converters participating in the control. In this paper, the concept of the wide-synchronization control is investigated as solution to effectively improve the oscillatory stability of the system. The results indicate that the proposed concept is capable to provide a decisive contribution in preserving the system stability, even under severe critical condition
A blockchain-based architecture for tracking and remunerating fast frequency response
The increasing penetration of renewable sources introduces new challenges for power systems’ stability, especially for isolated systems characterized by low inertia and powered through a single diesel power plant, such as it happens in small islands. For this reason, research projects, such as the BLORIN project, have focused on the provision of energy services involving electric vehicles owners residential users to mitigate possible issues on the power system due to unpredictable generation from renewable sources. The residential users were part of a blockchain-based platform, which also the Distributors/Aggregators were accessing. This paper describes the integrated framework that was set up to verify the feasibility and effectiveness of some of the methodologies developed in the BLORIN project for fast frequency response in isolated systems characterized by low rotational inertia. The validation of the proposed methodologies for fast frequency response using Vehicle-to-Grid or Demand Response programs was indeed carried out by emulating the dynamic behavior of different power resources in a Power Hardware-in-the-Loop environment using the equipment installed at the LabZERO laboratory of Politecnico di Bari, Italy. The laboratory, hosting a physical microgrid as well as Power Hardware-in-the-Loop facilities, was integrated within the BLORIN blockchain platform. The tests were conducted by assuming renewable generation development scenarios (mainly photovoltaic) and simulating the system under the worst-case scenarios caused by reduced rotational inertia. The experiments allowed to fully simulate users’ interaction with the energy system and blockchain network reproducing realistic conditions of tracking and remuneration of users’ services. The results obtained show the effectiveness of the BLORIN platform for the provision, tracking and remuneration of grid services by electric vehicles and end users, and the benefits that are achieved in terms of reducing the number of diesel generating units that need to be powered on just to provide operational reserve due to the penetration of renewable sources, resulting in fuel savings and reduced emissions
New hope in brain glioma surgery: The role of intraoperative ultrasound. A review
Maximal safe resection represents the gold standard for surgery of malignant brain tumors. As regards gross-total resection, accurate localization and precise delineation of the tumor margins are required. Intraoperative diagnostic imaging (Intra-Operative Magnetic Resonance-IOMR, Intra-Operative Computed Tomography-IOCT, Intra-Operative Ultrasound-IOUS) and dyes (fluorescence) have become relevant in brain tumor surgery, allowing for a more radical and safer tumor resection. IOUS guidance for brain tumor surgery is accurate in distinguishing tumor from normal parenchyma, and it allows a real-time intraoperative visualization. We aim to evaluate the role of IOUS in gliomas surgery and to outline specific strategies to maximize its efficacy. We performed a literature research through the Pubmed database by selecting each article which was focused on the use of IOUS in brain tumor surgery, and in particular in glioma surgery, published in the last 15 years (from 2003 to 2018). We selected 39 papers concerning the use of IOUS in brain tumor surgery, including gliomas. IOUS exerts a notable attraction due to its low cost, minimal interruption of the operational flow, and lack of radiation exposure. Our literature review shows that increasing the use of ultrasound in brain tumors allows more radical resections, thus giving rise to increases in survival
- …