5 research outputs found

    Humoral Immunogenicity and Efficacy of a Single Dose of ChAdOx1 MERS Vaccine Candidate in Dromedary Camels

    Get PDF
    MERS-CoV seronegative and seropositive camels received a single intramuscular dose of ChAdOx1 MERS, a replication-deficient adenoviral vectored vaccine expressing MERS-CoV spike protein, with further groups receiving control vaccinations. Infectious camels with active naturally acquired MERS-CoV infection, were co-housed with the vaccinated camels at a ratio of 1:2 (infected:vaccinated); nasal discharge and virus titres were monitored for 14 days. Overall, the vaccination reduced virus shedding and nasal discharge (p = 0.0059 and p = 0.0274, respectively). Antibody responses in seropositive camels were enhancedby the vaccine; these camels had a higher average age than seronegative. Older seronegative camels responded more strongly to vaccination than younger animals; and neutralising antibodies were detected in nasal swabs. Further work is required to optimise vaccine regimens for younger seronegative camels

    IS711 sequencing of Brucella melitensis and Brucella abortus strains, and use of microchip-based real-time PCR for rapid monitoring

    No full text
    In animal production systems around the world, brucellosis is a serious zoonotic disease that creates public health hazards and losses in economic terms. The aim of the study is to genotype and molecularly characterize Brucella melitensis (B. melitensis) and Brucella abortus (B. abortus) collected from different animal species and humans. A total of 50 isolates of Brucella species (16B. melitensis and 34B. abortus) were isolated from 1081 animal and human samples using a culture technique, followed by biochemical identification using the Vitek 2 compact system and proteomic identification using mass spectrometry technology. Molecular genotyping was performed on all isolates using multiplex real-time PCR. Six isolates from each genotype of Brucella species were selected and genetically evaluated by IS711 insertion sequences. Microchips-based real-time PCR for Brucella species identification was performed on twelve genetically characterized isolates as a first attempt. Forty-four (88%) isolates of Brucella species were detected using multiplex real-time PCR. Based on IS711 nucleotide sequencing, twelve isolates were phylogenetically clustered into their specific clusters. The results of the comparative analysis of conventional real time and microchips-based real time indicated that the later is faster and qualitatively more sensitive than conventional real time; however, further studies are needed to ensure that it is capable of serving as a gold standard alternative for Brucella species monitoring

    <i>Helicobacter pylori</i> Infection: Current Status and Future Prospects on Diagnostic, Therapeutic and Control Challenges

    No full text
    Helicobacter pylori (H. pylori) infection, which affects approximately half of the world’s population, remains a serious public health problem. As H. pylori infection leads to a number of gastric pathologies, including inflammation, gastroduodenal ulcers, and malignancies, early detection and treatment are crucial to preventing the spread of the infection. Multiple extragastric complications, such as iron deficiency anaemia, immune thrombocytopenic purpura, vitamin B12 deficiency, diabetes mellitus, cardiovascular diseases, and certain neurological disorders, have also been linked to H. pylori infection. An awareness of H. pylori and associated health hazards is necessary to minimize or even eradicate the infection. Therefore, there is an urgent need to raise the standards for the currently employed diagnostic, eradication, alternative treatment strategies. In addition, a brief overview of traditional and cutting-edge approaches that have proven effective in identifying and managing H. pylori is needed. Based on the test and laboratory equipment available and patient clinical characteristics, the optimal diagnostic approach requires weighing several factors. The pathophysiology and pathogenic mechanisms of H. pylori should also be studied, focusing more on the infection-causing virulence factors of this bacterium. Accordingly, this review aims to demonstrate the various diagnostic, pathophysiological, therapeutic, and eradication tactics available for H. pylori, emphasizing both their advantages and disadvantages. Invasive methods (such as quick urease testing, biopsy, or culture) or noninvasive methods (such as breath tests, stool investigations, or serological tests) can be used. We also present the most recent worldwide recommendations along with scientific evidence for treating H. pylori. In addition to the current antibiotic regimens, alternative therapies may also be considered. It is imperative to eradicate the infections caused by H. pylori as soon as possible to prevent problems and the development of stomach cancer. In conclusion, significant advances have been made in identifying and treating H. pylori. To improve eradication rates, peptide mass fingerprinting can be used as a diagnostic tool, and vaccines can also eliminate the infection

    How MALDI-TOF Mass Spectrometry Technology Contributes to Microbial Infection Control in Healthcare Settings

    No full text
    Healthcare settings have been utilizing matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) since 2010. MALDI-TOF MS has various benefits over the conventional method of biochemical identification, including ease of use, speed, accuracy, and low cost. This approach can solve many of the obstacles to identifying bacteria, fungi and viruses. As technology advanced, more and more databases kept track of spectra, allowing species with similar morphological, genotypic, and biochemical traits to be identified. Using MALDI-TOF MS for identification has become more accurate and quicker due to advances in sample preparation and database enrichment. Rapid sample detection and colony identification using MALDI-TOF MS have produced promising results. A key application of MALDI-TOF MS is quickly identifying highly virulent and drug-resistant diseases. Here, we present a review of the scientific literature assessing the effectiveness of MALDI-TOF MS for locating clinically relevant pathogenic bacteria, fungi, and viruses. MALDI-TOF MS is a useful strategy for locating clinical pathogens, however, it also has some drawbacks. A small number of spectra in the database and inherent similarities among organisms can make it difficult to distinguish between different species, which can result in misidentifications. The majority of the time additional testing may correct these problems, which happen very seldom. In conclusion, infectious illness diagnosis and clinical care are being revolutionized by the use of MALDI-TOF MS in the clinical microbiology laboratory

    Helicobacter pylori Infection: Current Status and Future Prospects on Diagnostic, Therapeutic and Control Challenges

    No full text
    Helicobacter pylori (H. pylori) infection, which affects approximately half of the world&rsquo;s population, remains a serious public health problem. As H. pylori infection leads to a number of gastric pathologies, including inflammation, gastroduodenal ulcers, and malignancies, early detection and treatment are crucial to preventing the spread of the infection. Multiple extragastric complications, such as iron deficiency anaemia, immune thrombocytopenic purpura, vitamin B12 deficiency, diabetes mellitus, cardiovascular diseases, and certain neurological disorders, have also been linked to H. pylori infection. An awareness of H. pylori and associated health hazards is necessary to minimize or even eradicate the infection. Therefore, there is an urgent need to raise the standards for the currently employed diagnostic, eradication, alternative treatment strategies. In addition, a brief overview of traditional and cutting-edge approaches that have proven effective in identifying and managing H. pylori is needed. Based on the test and laboratory equipment available and patient clinical characteristics, the optimal diagnostic approach requires weighing several factors. The pathophysiology and pathogenic mechanisms of H. pylori should also be studied, focusing more on the infection-causing virulence factors of this bacterium. Accordingly, this review aims to demonstrate the various diagnostic, pathophysiological, therapeutic, and eradication tactics available for H. pylori, emphasizing both their advantages and disadvantages. Invasive methods (such as quick urease testing, biopsy, or culture) or noninvasive methods (such as breath tests, stool investigations, or serological tests) can be used. We also present the most recent worldwide recommendations along with scientific evidence for treating H. pylori. In addition to the current antibiotic regimens, alternative therapies may also be considered. It is imperative to eradicate the infections caused by H. pylori as soon as possible to prevent problems and the development of stomach cancer. In conclusion, significant advances have been made in identifying and treating H. pylori. To improve eradication rates, peptide mass fingerprinting can be used as a diagnostic tool, and vaccines can also eliminate the infection
    corecore