566 research outputs found

    In Vitro Anti-Cytomegalovirus Activity of Kampo (Japanese Herbal) Medicine

    Get PDF
    We examined the effect of three types of Kampo medicines on human cytomegalovirus (CMV) replication in the human embryonic fibroblast cell line, MRC-5. Treatment of cells with at least 0.01 μg/ml of Kampo medicines inhibited the cytopathic effects of CMV-infected MRC-5 cells. Moreover, Kampo medicine decreased the replication of CMV without affecting the inhibition of host cells, with a concomitant decrease in CMV DNA levels. However, Kampo medicine demonstrated no virocidal effect on cell-free CMV. Furthermore, western blotting analysis demonstrated that the Kampo medicine decreased the amount of 65 kDa late antigen expression in the infected cells. These results suggest that Kampo medicine may be sufficient to inhibit viral DNA replication and late protein synthesis, resulting in anti-CMV effects. Therefore, these three Kampo medicines have the potential of being a source of new powerful anti-CMV compounds

    Mode Conversion Behavior of Guided Wave in a Pipe Inspection System Based on a Long Waveguide

    Get PDF
    To make clear the mode conversion behavior of S0-mode lamb wave and SH0-plate wave converting to the longitudinal mode guided wave and torsional mode guided wave in a pipe, respectively, the experiments were performed based on a previous built pipe inspection system. The pipe was wound with an L-shaped plate or a T-shaped plate as the waveguide, and the S0-wave and SH0-wave were excited separately in the waveguide. To carry out the objective, a meander-line coil electromagnetic acoustic transducer (EMAT) for S0-wave and a periodic permanent magnet (PPM) EMAT for SH0-wave were developed and optimized. Then, several comparison experiments were conducted to compare the efficiency of mode conversion. Experimental results showed that the T(0,1) mode, L(0,1) mode, and L(0,2) mode guided waves can be successfully detected when converted from the S0-wave or SH0-wave with different shaped waveguides. It can also be inferred that the S0-wave has a better ability to convert to the T(0,1) mode, while the SH0-wave is easier to convert to the L(0,1) mode and L(0,2) mode, and the L-shaped waveguide has a better efficiency than T-shaped waveguide

    Scissor lift with real-time self-adjustment ability based on variable gravity compensation mechanism

    Get PDF
    Most robots involved in vertical movement against gravitation require actuators large enough to support their own weight. To improve the inherent safety of such robots against the large actuators and reduce their energy consumption, numerous gravity compensation mechanisms (GCMs) have been proposed. Our previous study proposed a variable GCM (VGCM) that uses two types of springs and can adjust the compensation force. In this paper, a VGCM-based scissor lift (pantograph lift) that uses three springs and a smaller actuator is proposed. A prototype is designed and fabricated, and the performance of the prototype is evaluated experimentally. The results demonstrate that the developed scissor lift meets the design specifications. In addition, a load estimator is established based on the dynamic model of the scissor lift. A real-time self-adjustment method that automatically changes the compensation force is proposed, and its effectiveness is verified

    Accumulation of Uroporphyrin I in Necrotic Tissues of Squamous Cell Carcinoma after Administration of 5-Aminolevulinic Acid

    Get PDF
    5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) fluorescence is widely used for the intraoperative detection of malignant tumors. However, the fluorescence emission profiles of the accompanying necrotic regions of these tumors have yet to be determined. To address this, we performed fluorescence and high-performance liquid chromatography (HPLC) analyses of necrotic tissues of squamous cancer after 5-ALA administration. In resected human lymph nodes of metastatic squamous cell carcinoma, we found a fluorescence peak at approximately 620 nm in necrotic lesions, which was distinct from the PpIX fluorescence peak at 635 nm for viable cancer lesions. Necrotic lesions obtained from a subcutaneous xenograft model of human B88 oral squamous cancer also emitted the characteristic fluorescence peak at 620 nm after light irradiation: the fluorescence intensity ratio (620 nm/635 nm) increased with the energy of the irradiation light. HPLC analysis revealed a high content ratio of uroporphyrin I (UPI)/total porphyrins in the necrotic cores of murine tumors, indicating that UPI is responsible for the 620 nm peak. UPI accumulation in necrotic tissues after 5-ALA administration was possibly due to the failure of the heme biosynthetic pathway. Taken together, fluorescence imaging of UPI after 5-ALA administration may be applicable for the evaluation of tumor necrosis

    Sweet Taste Receptor Expressed in Pancreatic β-Cells Activates the Calcium and Cyclic AMP Signaling Systems and Stimulates Insulin Secretion

    Get PDF
    BACKGROUND:Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. METHODOLOGY/PRINCIPAL FINDINGS:The expression of the sweet taste receptor was determined by RT-PCR and immunohistochemistry. Changes in cytoplasmic Ca(2+) ([Ca(2+)](c)) and cAMP ([cAMP](c)) were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca(2+)](c). The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5)-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca(2+)](c) response. The effect of sucralose on [Ca(2+)](c) was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a G(q) inhibitor. Sucralose also induced sustained elevation of [cAMP](c), which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. CONCLUSIONS:Sweet taste receptor is expressed in beta-cells, and activation of this receptor induces insulin secretion by Ca(2+) and cAMP-dependent mechanisms

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore