4,433 research outputs found
Weak nonlinearities: A new route to optical quantum computation
Quantum information processing (QIP) offers the promise of being able to do
things that we cannot do with conventional technology. Here we present a new
route for distributed optical QIP, based on generalized quantum non-demolition
measurements, providing a unified approach for quantum communication and
computing. Interactions between photons are generated using weak
non-linearities and intense laser fields--the use of such fields provides for
robust distribution of quantum information. Our approach requires only a
practical set of resources, and it uses these very efficiently. Thus it
promises to be extremely useful for the first quantum technologies, based on
scarce resources. Furthermore, in the longer term this approach provides both
options and scalability for efficient many-qubit QIP.Comment: 7 Pages, 4 Figure
The efficiencies of generating cluster states with weak non-linearities
We propose a scalable approach to building cluster states of matter qubits
using coherent states of light. Recent work on the subject relies on the use of
single photonic qubits in the measurement process. These schemes can be made
robust to detector loss, spontaneous emission and cavity mismatching but as a
consequence the overhead costs grow rapidly, in particular when considering
single photon loss. In contrast, our approach uses continuous variables and
highly efficient homodyne measurements. We present a two-qubit scheme, with a
simple bucket measurement system yielding an entangling operation with success
probability 1/2. Then we extend this to a three-qubit interaction, increasing
this probability to 3/4. We discuss the important issues of the overhead cost
and the time scaling. This leads to a "no-measurement" approach to building
cluster states, making use of geometric phases in phase space.Comment: 21 pages, to appear in special issue of New J. Phys. on
"Measurement-Based Quantum Information Processing
Applications of Coherent Population Transfer to Quantum Information Processing
We develop a theoretical framework for the exploration of quantum mechanical
coherent population transfer phenomena, with the ultimate goal of constructing
faithful models of devices for classical and quantum information processing
applications. We begin by outlining a general formalism for weak-field quantum
optics in the Schr\"{o}dinger picture, and we include a general
phenomenological representation of Lindblad decoherence mechanisms. We use this
formalism to describe the interaction of a single stationary multilevel atom
with one or more propagating classical or quantum laser fields, and we describe
in detail several manifestations and applications of electromagnetically
induced transparency. In addition to providing a clear description of the
nonlinear optical characteristics of electromagnetically transparent systems
that lead to ``ultraslow light,'' we verify that -- in principle -- a
multi-particle atomic or molecular system could be used as either a low power
optical switch or a quantum phase shifter. However, we demonstrate that the
presence of significant dephasing effects destroys the induced transparency,
and that increasing the number of particles weakly interacting with the probe
field only reduces the nonlinearity further. Finally, a detailed calculation of
the relative quantum phase induced by a system of atoms on a superposition of
spatially distinct Fock states predicts that a significant quasi-Kerr
nonlinearity and a low entropy cannot be simultaneously achieved in the
presence of arbitrary spontaneous emission rates. Within our model, we identify
the constraints that need to be met for this system to act as a one-qubit and a
two-qubit conditional phase gate.Comment: 25 pages, 14 figure
Low Cost and Compact Quantum Cryptography
We present the design of a novel free-space quantum cryptography system,
complete with purpose-built software, that can operate in daylight conditions.
The transmitter and receiver modules are built using inexpensive off-the-shelf
components. Both modules are compact allowing the generation of renewed shared
secrets on demand over a short range of a few metres. An analysis of the
software is shown as well as results of error rates and therefore shared secret
yields at varying background light levels. As the system is designed to
eventually work in short-range consumer applications, we also present a use
scenario where the consumer can regularly 'top up' a store of secrets for use
in a variety of one-time-pad and authentication protocols.Comment: 18 pages, 9 figures, to be published in New Journal of Physic
Quantum Computation by Communication
We present a new approach to scalable quantum computing--a ``qubus
computer''--which realises qubit measurement and quantum gates through
interacting qubits with a quantum communication bus mode. The qubits could be
``static'' matter qubits or ``flying'' optical qubits, but the scheme we focus
on here is particularly suited to matter qubits. There is no requirement for
direct interaction between the qubits. Universal two-qubit quantum gates may be
effected by schemes which involve measurement of the bus mode, or by schemes
where the bus disentangles automatically and no measurement is needed. In
effect, the approach integrates together qubit degrees of freedom for
computation with quantum continuous variables for communication and
interaction.Comment: final published versio
Preparation of Knill-Laflamme-Milburn states using tunable controlled phase gate
A specific class of partially entangled states known as
Knill-Laflamme-Milburn states (or KLM states) has been proved to be useful in
relation to quantum information processing [Knill et al., Nature 409, 46
(2001)]. Although the usage of such states is widely investigated, considerably
less effort has been invested into experimentally accessible preparation
schemes. This paper discusses the possibility to employ a tunable controlled
phase gate to generate an arbitrary Knill-Laflamme-Milburn state. In the first
part, the idea of using the controlled phase gate is explained on the case of
two-qubit KLM states. Optimization of the proposed scheme is then discussed for
the framework of linear optics. Subsequent generalization of the scheme to
arbitrary n-qubit KLM state is derived in the second part of this paper.Comment: 5 pages, 4 figures, accepted in Journal of Physics
Violations of Bell Inequalities for Measurements with Macroscopic Uncertainties: What does it Mean to Violate Macroscopic Local Realism?
We suggest to test the premise of ``macroscopic local realism'' which is
sufficient to derive Bell inequalities when measurements of photon number are
only accurate to an uncertainty of order photons, where is macroscopic.
Macroscopic local realism is only sufficient to imply, in the context of the
original Einstein-Podolsky-Rosen argument, fuzzy ``elements of reality'' which
have a macroscopic indeterminacy. We show therefore how the violation of local
realism in the presence of macroscopic uncertainties implies the failure of
``macroscopic local realism''. Quantum states violating this macroscopic local
realism are presented.Comment: 28 pages, 5 figures- new version is unchanged but tightened-20 pages,
5 figure
Quantum master equation descriptions of a nanomechanical resonator coupled to a single-electron transistor
We analyse the quantum dynamics of a nanomechanical resonator coupled to a
normal-state single-electron transistor (SET). Starting from a microscopic
description of the system, we derive a master equation for the SET island
charge and resonator which is valid in the limit of weak electro-mechanical
coupling. Using this master equation we show that, apart from brief transients,
the resonator always behaves like a damped harmonic oscillator with a shifted
frequency and relaxes into a thermal-like steady state. Although the behaviour
remains qualitatively the same, we find that the magnitude of the resonator
damping rate and frequency shift depend very sensitively on the relative
magnitudes of the resonator period and the electron tunnelling time. Maximum
damping occurs when the electrical and mechanical time-scales are the same, but
the frequency shift is greatest when the resonator moves much more slowly than
the island charge. We then derive reduced master equations which describe just
the resonator dynamics. By making slightly different approximations, we obtain
two different reduced master equations for the resonator. Apart from minor
differences, the two reduced master equations give rise to a consistent picture
of the resonator dynamics which matches that obtained from the master equation
including the SET island charge.Comment: 22 pages, 4 figure
Simple Scheme for Efficient Linear Optics Quantum Gates
We describe the construction of a conditional quantum control-not (CNOT) gate
from linear optical elements following the program of Knill, Laflamme and
Milburn [Nature {\bf 409}, 46 (2001)]. We show that the basic operation of this
gate can be tested using current technology. We then simplify the scheme
significantly.Comment: Problems with PDF figures correcte
- âŠ