905 research outputs found

    Planning Against Fictitious Players in Repeated Normal Form Games

    No full text
    Planning how to interact against bounded memory and unbounded memory learning opponents needs different treatment. Thus far, however, work in this area has shown how to design plans against bounded memory learning opponents, but no work has dealt with the unbounded memory case. This paper tackles this gap. In particular, we frame this as a planning problem using the framework of repeated matrix games, where the planner's objective is to compute the best exploiting sequence of actions against a learning opponent. The particular class of opponent we study uses a fictitious play process to update her beliefs, but the analysis generalizes to many forms of Bayesian learning agents. Our analysis is inspired by Banerjee and Peng's AIM framework, which works for planning and learning against bounded memory opponents (e.g an adaptive player). Building on this, we show how an unbounded memory opponent (specifically a fictitious player) can also be modelled as a finite MDP and present a new efficient algorithm that can find a way to exploit the opponent by computing in polynomial time a sequence of play that can obtain a higher average reward than those obtained by playing a game theoretic (Nash or correlated) equilibrium

    Microarray and EST database estimates of mRNA expression levels differ: The protein length versus expression curve for C. elegans

    Get PDF
    BACKGROUND: Various methods for estimating protein expression levels are known. The level of correlation between these methods is only fair, and systematic biases in each of the methods cannot be ruled out. We here investigate systematic biases in the estimation of gene expression rates from microarray data and from abundance within the Expressed Sequence Tag (EST) database. We suggest that length is a significant factor in biases to measured gene expression rates. As a specific example of the importance of the bias of expression rate with length, we address the following evolutionary question: Does the average C. elegans protein length increase or decrease with expression level? Two different answers to this question have been reported in the literature, one method using expression levels estimated by abundance within the EST database and another using microarrays. We have investigated this issue by constructing the full protein length versus expression curve for C. elegans, using both methods for estimating expression levels. RESULTS: The microarray data show a monotonic decrease of length with expression level, whereas the abundance within the EST database data show a non-monotonic behavior. Furthermore, the ratio of the expression level estimated by the EST database to that measured by microarrays is not constant, but rather systematically biased with gene length. CONCLUSIONS: It is suggested that the length bias may lie primarily in the abundance within the EST database method, being not ameliorated by internal standards as it is in the microarray data, and that this bias should be removed before data interpretation. When this is done, both the microarray and the abundance within the EST database give a monotonic decrease of spliced length with expression level, and the correlation between the EST and microarray data becomes larger. We suggest that standard RNA controls be used to normalize for length bias in any method that measures expression

    Cellular Responses of the Retina to West Nile Virus Infection

    Get PDF
    Age-related macular degeneration (AMD) is the leading cause of blindness in the developing world in people aged over 60 years, manifested as a loss of central vision in one or both eyes, with significant morbidity including loss of mobility and depression. This condition involves the degeneration of the macula, and although the exact aetiology of this disease is unknown, various epidemiological studies have shown it to be multifactorial. Current research points towards the involvement of a dysregulated immune system in the pathogenesis and progression of the disease: as the body ages, the immune system increasingly adopts a more inflammatory basal state. However, not all of the aged population develops AMD and it is highly likely that an additional stimulus or stimuli is/are needed to exploit this dysregulated immune environment to initiate this disease. Given the range of pathogens that can infect the retina, we hypothesize that this breaking point could manifest as a chronic inflammation as a result of a low-level infection. West Nile Virus (WNV) is a flavivirus that has come into international prominence ever since its spread into previously WNV-free regions following the 1999 New York outbreak. As several case reports have shown that WNV is capable of infecting the retina, and given its immunopathogenic properties, we believe the virus is a useful tool to model key immune pathways and responses that may be involved in the development and progression of AMD. Of significant interest are the processes involved in the breakdown of the outer blood-retinal barrier (BRB), which is an important step in the progression of AMD from an early stage to a more severe one. Additionally, deciphering and understanding the profile and populations of leukocytes that are recruited during an immunopathic infection in an organ regarded as being immunoprivileged is of great appeal. With this in mind, we set out to investigate the effects of WNV infection on the retinal pigment epithelium (RPE), which comprises the outer BRB. Previously, our laboratory established the WNV BRB model by quantitating various parameters, such as level of infectivity, viral output by WNV-infected RPE and effects of WNV infection on RPE proliferation/migration. The effect of WNV on the extracellular matrix (ECM) production by RPE was also investigated and increases in collagen I, IV and fibronectin were noted. Global ECM production induced a lowered rate of proliferation of RPE seeded on WNV-infected RPE ECM as opposed to mock-infected ECM. A full genome microarray was also undertaken on WNV-infected RPE to analyse differentially regulated gene mRNA production, and increases in several immune genes, as well as genes involved in the stress-response pathway and the TGFβ pathway were found. This current investigation expanded upon these results, and found that WNV infection produces a predominantly CCL5 chemokine response rather than a CCL2 response. Additionally, a lack of TNF production was noted, despite a high initial upregulation of the TNF gene in WNV-infected cells. WNV attenuation was found to be predominantly IFNβ-1-driven, while induction of indoleamine 2,3 dioxygenase activity was induced in part by IFNλ-1 and -2. The effects of WNV infection on RPE barrier integrity was investigated, and an initial increase in infected cells of barrier integrity was observed. Several investigations resulted in a conclusion of a soluble-mediator as the likely mechanism behind this initial increase, and while none of the chemokines tested appeared to contribute to this change, the results suggest that it may be TLR3/RIG-I independent. Finally, establishment of a murine WNV intravitreal model was also undertaken, and several key parameters were determined, including confirmation of WNV-infection of the murine retina, effect of WNV titre on mortality, and histological analysis of the effects of WNV infection on the murine retina. Quantification of the leukocyte profile recruited into the WNV-infected murine retina and choroid revealed significant increases in inflammatory Ly6Chi monocytes, as well as significant differences between immune mice and naïve mice intravitreally infected with WNV, and differences between 2 month old and 5 month old mice. Collectively, these results highlight the importance of the interferon response in both direct and indirect anti-WNV activities and immunomodulation, the changes in outer BRB integrity and possible contributors to its degradation, and the establishment of the murine intravitreal WNV model along with identification of several key leukocytes that are recruited at the peak of infection. These results will help guide further research and highlight possible immune pathways that may contribute to dysregulated inflammatory processes that may occur during the pathogenesis of AMD

    Strategies for Improving the Diversity of the Health Professions

    Get PDF
    Evaluates programs and strategies that were designed to increase the number of underrepresented African Americans, Native Americans, and Latinos in the health professions in California. Includes recommendations
    corecore