1,421 research outputs found

    Two-Dimensional Nature of Four-Layer Superconductors by Inequivalent Hole Distribution

    Full text link
    The magnetization of the four-layer superconductor CuBa_{2}Ca_{3}Cu_4O_{12-\delta} with T_c\simeq117 K is presented. The high-field magnetization around T_c(H) follows the exact two-dimensional scaling function given by Te\v{s}anovi\'{c} and Andreev. This feature is contrary to the inference that the interlayer coupling becomes strong if the number of CuO_2 planes in a unit cell increases. Also, the fluctuation-induced susceptibility in the low-field region was analyzed by using the modified Lawrence-Doniach model. The effective number of independently fluctuating CuO_2 layers per unit cell, g_{\rm eff}, turned out to be \simeq 2 rather than 4, which indicated that two among the four CuO_2 layers were in states far from their optimal doping levels. This result could explain why CuBa_{2}Ca_{3}Cu_4O_{12-\delta} shows two-dimensional behavior.Comment: 5 pages and 4 figure

    Current-phase relation of the SNS junction in a superconducting loop

    Full text link
    We study the current-phase relation of the superconductor/normal/superconductor (SNS) junction imbedded in a superconducting loop. Considering the current conservation and free energy minimum conditions, we obtain the persistent currents of the normal/superconductor (NS) loop. At finite temperature we can explain the experimentally observed highly non-sinusoidal currents which have maxima near the zero external flux.Comment: 7 pages, 3 figures, version to appear in Europhys. Let

    Catalytic Properties of Gel-Immobilized Gold Nanoparticles in Decomposition Of Hydrogen Peroxide

    Get PDF
    This paper reports the study of hydrogen peroxide decomposition catalyzed by polymer-protected gold nanoparticles (AuNPs) immobilized within polyacrylamide hydrogel. The stabilization of AuNPs was achieved using hydrophilic polymers. Embedding of AuNPs stabilized with various polymers into polyacrylamide hydrogels was carried out using three ways: “in situ” polymerization, sorption and boronhydride methods. Size, shape and morphology of AuNPs were characterized by various physicochemical methods

    AC-induced superfluidity

    Full text link
    We argue that a system of ultracold bosonic atoms in a tilted optical lattice can become superfluid in response to resonant AC forcing. Among others, this allows one to prepare a Bose-Einstein condensate in a state associated with a negative effective mass. Our reasoning is backed by both exact numerical simulations for systems consisting of few particles, and by a theoretical approach based on Floquet-Fock states.Comment: Accepted for publication in Europhysics letters, 6 pages, 4 figures, Changes in v2: reference 7 replaced by a more recent on

    Raman Spectroscopy of Mott insulator states in optical lattices

    Full text link
    We propose and analyse a Raman spectroscopy technique for probing the properties of quantum degenerate bosons in the ground band of an optical lattice. Our formalism describes excitations to higher vibrational bands and is valid for deep lattices where a tight-binding approach can be applied to the describe the initial state of the system. In sufficiently deep lattices, localized states in higher vibrational bands play an important role in the system response, and shifts in resonant frequency of excitation are sensitive to the number of particles per site. We present numerical results of this formalism applied to the case of a uniform lattice deep in the Mott insulator regime.Comment: 10 pages, 3 figure

    Matching Reads to Many Genomes with the r-Index

    Get PDF
    The r-index is a tool for compressed indexing of genomic databases for exact pattern matching, which can be used to completely align reads that perfectly match some part of a genome in the database or to find seeds for reads that do not. This article shows how to download and install the programs ri-buildfasta and ri-align; how to call ri-buildfasta on an FASTA file to build an r-index for that file; and how to query that index with ri-align

    Efficient Construction of a Complete Index for Pan-Genomics Read Alignment

    Get PDF
    While short read aligners, which predominantly use the FM-index, are able to easily index one or a few human genomes, they do not scale well to indexing databases containing thousands of genomes. To understand why, it helps to examine the main components of the FM-index in more detail, which is a rank data structure over the Burrows-Wheeler Transform () of the string that will allow us to find the interval in the string\u2019s suffix array () containing pointers to starting positions of occurrences of a given pattern; second, a sample of the that\u2014when used with the rank data structure\u2014allows us access to the . The rank data structure can be kept small even for large genomic databases, by run-length compressing the , but until recently there was no means known to keep the sample small without greatly slowing down access to the . Now that Gagie et al. (SODA 2018) have defined an sample that takes about the same space as the run-length compressed \u2014we have the design for efficient FM-indexes of genomic databases but are faced with the problem of building them. In 2018 we showed how to build the of large genomic databases efficiently (WABI 2018) but the problem of building Gagie et al.\u2019s sample efficiently was left open. We compare our approach to state-of-the-art methods for constructing the sample, and demonstrate that it is the fastest and most space-efficient method on highly repetitive genomic databases. Lastly, we apply our method for indexing partial and whole human genomes and show that it improves over Bowtie with respect to both memory and time

    Prefix-free parsing for building big BWTs

    Get PDF
    High-throughput sequencing technologies have led to explosive growth of genomic databases; one of which will soon reach hundreds of terabytes. For many applications we want to build and store indexes of these databases but constructing such indexes is a challenge. Fortunately, many of these genomic databases are highly-repetitive - a characteristic that can be exploited to ease the computation of the Burrows-Wheeler Transform (BWT), which underlies many popular indexes. In this paper, we introduce a preprocessing algorithm, referred to as prefix-free parsing, that takes a text T as input, and in one-pass generates a dictionary D and a parse P of T with the property that the BWT of T can be constructed from D and P using workspace proportional to their total size and O(|T|)-time. Our experiments show that D and P are significantly smaller than T in practice, and thus, can fit in a reasonable internal memory even when T is very large. In particular, we show that with prefix-free parsing we can build an 131-MB run-length compressed FM-index (restricted to support only counting and not locating) for 1000 copies of human chromosome 19 in 2 h using 21 GB of memory, suggesting that we can build a 6.73 GB index for 1000 complete human-genome haplotypes in approximately 102 h using about 1 TB of memory
    corecore