45 research outputs found
Synthesis and Characterization of Polyethersulfone/Carbon Molecular Sieve Based Mixed Matrix Membranes for Water Treatment Applications
AbstractNovel mixed matrix membrane was prepared by incorporating the carbon molecular sieves (CMS) into polyethersulfone (PES) matrix. Flat sheet membranes of different filler concentrations were synthesized through phase inversion technique. Scanning electron microscope and Thermogravimetric analyzer were used to investigate the morphology and thermal stability of synthesized membranes respectively. Finally membranes were tested for their pure water flux and sodium chloride (NaCl) rejection (100ppm aqueous solution). Investigation has shown that all synthesized membranes had asymmetric structure with thin dense top and well-defined macropores in sublayer. It is noticed that inclusion of inorganic filler has improved the thermal stability as well as pure water flux of mixed matrix membranes (upto 33.8LMH at 3bar). Moreover, synthesized mixed matrix membranes also showed better NaCl rejection (upto 26.13% at 3bar) than pure polymeric membranes
Rejection of divalent ions in commercial tubular membranes: Effect of feed concentration and anion type
Four commercial tubular membranes (AFC80, AFC30, PU608, and ES404) have been investigated in this study for their performance of binary metal ions rejection under different feed conditions. A range of salts (tin chloride, tin sulphate, calcium chloride, calcium sulphate) with divalent cations were chosen to assess the effects of different anions (chloride and sulphate) on performance of the membranes. All membranes were tested by varying the feed concentration (2500, 5000, 10,000 mg L−1) at fixed cross flow velocity of 1.5 LPM and feed pressure 1400 kPa. Observed retention (Robs%) and permeate flux (Jv) were key parameters to evaluate the performance of studied tubular membranes. It was found that increase in concentration adversely affected the both evaluation parameters, i.e., permeate flux and rejection. Nevertheless, nanofiltration type tubular membranes (AFC80 and AFC30) showed higher rejection than their counterparts, i.e., ultrafiltration type tubular membranes (ES404, PU608) for all investigated salts. Maximum observed rejection for all salts was noted for AFC80 for all salts followed by AFC30, ES404 and PU608 tubular membranes. Furthermore, it is reveal that anion types (SO42−, Cl−) of these salts played a vital role in retention of these tubular membranes when the salts with same cations were used as feed solution
Rejection of divalent ions in commercial tubular membranes: Effect of feed concentration and anion type
Four commercial tubular membranes (AFC80, AFC30, PU608, and ES404) have been investigated in this study for their performance of binary metal ions rejection under different feed conditions. A range of salts (tin chloride, tin sulphate, calcium chloride, calcium sulphate) with divalent cations were chosen to assess the effects of different anions (chloride and sulphate) on performance of the membranes. All membranes were tested by varying the feed concentration (2500, 5000, 10,000 mg L−1) at fixed cross flow velocity of 1.5 LPM and feed pressure 1400 kPa. Observed retention (Robs%) and permeate flux (Jv) were key parameters to evaluate the performance of studied tubular membranes. It was found that increase in concentration adversely affected the both evaluation parameters, i.e., permeate flux and rejection. Nevertheless, nanofiltration type tubular membranes (AFC80 and AFC30) showed higher rejection than their counterparts, i.e., ultrafiltration type tubular membranes (ES404, PU608) for all investigated salts. Maximum observed rejection for all salts was noted for AFC80 for all salts followed by AFC30, ES404 and PU608 tubular membranes. Furthermore, it is reveal that anion types (SO42−, Cl−) of these salts played a vital role in retention of these tubular membranes when the salts with same cations were used as feed solution
Interfacial Tailoring of Polyether Sulfone-Modified Silica Mixed Matrix Membranes for CO2 Separation
In this work, in situ polymerization of modified sol-gel silica in a polyether sulfone matrix is presented to control the interfacial defects in organic-inorganic composite membranes. Polyether sulfone polymer and modified silica are used as organic and inorganic components of mixed matrix membranes (MMM). The membranes were prepared with different loadings (2, 4, 6, and 8 wt.%) of modified and unmodified silica. The synthesized membranes were characterized using Field emission electron scanning microscopy, energy dispersive X-ray, Fourier transform infrared spectroscopy, thermogravimetric analyzer, and differential scanning calorimetry. The performance of the membranes was evaluated using a permeation cell set up at a relatively higher-pressure range (5–30 bar). The membranes appear to display ideal morphology with uniform distribution of particles, defect-free structure, and absence of interfacial defects such as voids and particle accumulations. Additionally, the CO(2)/CH(4) selectivity of the membrane increased with the increase in the modified silica content. Further comparison of the performance indicates that PES/modified silica MMMs show a promising feature of commercially attractive membranes. Therefore, tailoring the interfacial morphology of the membrane results in enhanced properties and improved CO(2) separation performance
Experimental and numerical investigation on convective heat transfer in actively heated bundle-pipe
The present work investigates heat transfer through natural convection using a series of experiments and computational modeling using Computational Fluid Dynamics (CFD) simulations in a one-meter bundle pipe with three internal pipes. The exact complex geometry is modeled where the flow channel is reduced through a spiral groove attached to a rod inside the internal tubes which was challenging compared to the flow in circular pipes in previous studies. To support the computational modeling investigations, convective heat transfer analysis is also studied through experiments with water as the production and heating fluids. Further, simulations are carried out with water-crude oil and aqueous ethylene glycol-water as the heating mediums and production fluids, respectively. Based on the heat transfer rates estimated from experimental data and CFD simulation results for the respective tubes, a modification to an existing Nusselt number is proposed for the range of temperature and flow rates used in the experiments. The proposed model, Nui = Prim Rain, was validated against experimental data and a good agreement with R2 values of more than 0.94 was achieved.The Y-UTPhttps://www.tandfonline.com/loi/tcfm20hj2022Mechanical and Aeronautical Engineerin