71 research outputs found
Theory completion using inverse entailment
The main real-world applications of Inductive Logic Programming (ILP) to date involve the "Observation
Predicate Learning" (OPL) assumption, in which both the
examples and hypotheses define the same predicate. However, in both scientific discovery and language learning potential applications exist in which OPL does not hold. OPL is ingrained within the theory and performance testing of Machine Learning. A general ILP technique called "Theory Completion using Inverse Entailment" (TCIE) is introduced which is applicable to non-OPL applications. TCIE is based on inverse entailment and is closely allied to abductive inference. The implementation of TCIE within Progol5.0 is described. The implementation uses contra-positives in a similar way to Stickel's Prolog Technology Theorem Prover. Progol5.0 is tested on two different data-sets. The first dataset involves a grammar which translates numbers to their representation in English. The second dataset involves hypothesising the function of unknown genes within a network of metabolic pathways. On both datasets near complete recovery of performance is achieved after relearning when randomly chosen portions of background knowledge are removed. Progol5.0's running times for experiments in this paper were typically under 6 seconds on a standard laptop PC
Recommended from our members
How does predicate invention affect human comprehensibility?
During the 1980s Michie defined Machine Learning in terms of two orthogonal axes of performance: predictive accuracy and comprehensibility of generated hypotheses. Since predictive accuracy was readily measurable and comprehensibility not so, later definitions in the 1990s, such as that of Mitchell, tended to use a one-dimensional approach to Machine Learning based solely on predictive accuracy, ultimately favouring statistical over symbolic Machine Learning approaches. In this paper we provide a definition of comprehensibility of hypotheses which can be estimated using human participant trials. We present the results of experiments testing human comprehensibility of logic programs learned with and without predicate invention. Results indicate that comprehensibility is affected not only by the complexity of the presented program but also by the existence of anonymous predicate symbols
Learning Chomsky-like grammars for biological sequence families
This paper presents a new method of measuring performance when positives are rare and investigates whether Chomsky-like grammar representations are useful for learning accurate comprehensible predictors of members of biological sequence families. The positive-only learning framework of the Inductive Logic Programming (ILP) system CProgol is used to generate a grammar for recognising a class of proteins known as human neuropeptide precursors (NPPs). As far as these authors are aware, this is both the first biological grammar learnt using ILP and the first real-world scientific application of the positive-only learning framework of CProgol. Performance is measured using both predictive accuracy and a new cost function, em Relative Advantage (RA). The RA results show that searching for NPPs by using our best NPP predictor as a filter is more than 100 times more efficient than randomly selecting proteins for synthesis and testing them for biological activity. The highest RA was achieved by a model which includes grammar-derived features. This RA is significantly higher than the best RA achieved without the use of the grammar-derived features
Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited
Since the late 1990s predicate invention has been under-explored within inductive logic programming due to difficulties in formulating efficient search mechanisms. However, a recent paper demonstrated that both predicate invention and the learning of recursion can be efficiently implemented for regular and context-free grammars, by way of metalogical substitutions with respect to a modified Prolog meta-interpreter which acts as the learning engine. New predicate symbols are introduced as constants representing existentially quantified higher-order variables. The approach demonstrates that predicate invention can be treated as a form of higher-order logical reasoning. In this paper we generalise the approach of meta-interpretive learning (MIL) to that of learning higher-order dyadic datalog programs. We show that with an infinite signature the higher-order dyadic datalog class H2 2 has universal Turing expressivity though H2 2 is decidable given a finite signature. Additionally we show that Knuth–Bendix ordering of the hypothesis space together with logarithmic clause bounding allows our MIL implementation MetagolD to PAC-learn minimal cardinality H2 2 definitions. This result is consistent with our experiments which indicate that MetagolD efficiently learns compact H2 2 definitions involving predicate invention for learning robotic strategies, the East–West train challenge and NELL. Additionally higher-order concepts were learned in the NELL language learning domain. The Metagol code and datasets described in this paper have been made publicly available on a website to allow reproduction of results in this paper
Recommended from our members
Ultra-Strong Machine Learning: comprehensibility of programs learned with ILP
During the 1980s Michie defined Machine Learning in terms of two orthogonal axes of performance: predictive accuracy and comprehensibility of generated hypotheses. Since predictive accuracy was readily measurable and comprehensibility not so, later definitions in the 1990s, such as Mitchell’s, tended to use a one-dimensional approach to Machine Learning based solely on predictive accuracy, ultimately favouring statistical over symbolic Machine Learning approaches. In this paper we provide a definition of comprehensibility of hypotheses which can be estimated using human participant trials. We present two sets of experiments testing human comprehensibility of logic programs. In the first experiment we test human comprehensibility with and without predicate invention. Results indicate comprehensibility is affected not only by the complexity of the presented program but also by the existence of anonymous predicate symbols. In the second experiment we directly test whether any state-of-the-art ILP systems are ultra-strong learners in Michie’s sense, and select the Metagol system for use in humans trials. Results show participants were not able to learn the relational concept on their own from a set of examples but they were able to apply the relational definition provided by the ILP system correctly. This implies the existence of a class of relational concepts which are hard to acquire for humans, though easy to understand given an abstract explanation. We believe improved understanding of this class could have potential relevance to contexts involving human learning, teaching and verbal interaction
Towards meta-interpretive learning of programming language semantics
We introduce a new application for inductive logic programming: learning the
semantics of programming languages from example evaluations. In this short
paper, we explored a simplified task in this domain using the Metagol
meta-interpretive learning system. We highlighted the challenging aspects of
this scenario, including abstracting over function symbols, nonterminating
examples, and learning non-observed predicates, and proposed extensions to
Metagol helpful for overcoming these challenges, which may prove useful in
other domains.Comment: ILP 2019, to appea
Enriching Visual with Verbal Explanations for Relational Concepts -- Combining LIME with Aleph
With the increasing number of deep learning applications, there is a growing
demand for explanations. Visual explanations provide information about which
parts of an image are relevant for a classifier's decision. However,
highlighting of image parts (e.g., an eye) cannot capture the relevance of a
specific feature value for a class (e.g., that the eye is wide open).
Furthermore, highlighting cannot convey whether the classification depends on
the mere presence of parts or on a specific spatial relation between them.
Consequently, we present an approach that is capable of explaining a
classifier's decision in terms of logic rules obtained by the Inductive Logic
Programming system Aleph. The examples and the background knowledge needed for
Aleph are based on the explanation generation method LIME. We demonstrate our
approach with images of a blocksworld domain. First, we show that our approach
is capable of identifying a single relation as important explanatory construct.
Afterwards, we present the more complex relational concept of towers. Finally,
we show how the generated relational rules can be explicitly related with the
input image, resulting in richer explanations
- …